
Version 6.3.1 Installation

This document applies to Com-plete Version 6.3.1 and to all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent
release notes or new editions.

© Copyright Software AG 2003
All rights reserved.

The name Software AG and/or all Software AG product names are either trademarks or registered
trademarks of Software AG. Other company and product names mentioned herein may be trademarks of
their respective owners.

Table of Contents
............ 1Overview of the Installation Documentation
............ 1Overview of the Installation Documentation
................ 2Installation and Migration
................ 2Installation and Migration
.................. 3General Information
................. 3General Information
............... 3Supported Operating Systems
.................. 3Installation Jobs
.............. 4Using System Maintenance Aid
............ 4Installation Data Set Naming Convention
................ 4All Operating Systems:
................... 4z/OS only:
................... 5VSE only:
................... 6z/OS Installation
.................. 6z/OS Installation
................. 6The Installation Tape
.................. 6Tape Contents
............ 7Copying Contents of the Tape to Disk
.................. 8Installation Steps
................. 17Startup Procedure
................... 18What Next?
................... 19VSE Installation
.................. 19VSE Installation
................. 19The Installation Tape
.................. 19Tape Contents
............ 20Copying Contents of the Tape to Disk
.................. 21Installation Steps
................. 26Startup Procedure
................... 27What Next?
.................... 29Migration
.................... 29Migration
.............. 29Changes to the Start-up Procedure
............... 30Changes to the SYSPARMs
............... 30COMSYS Data Containers
....... 30Reducing the Thread Region Size for most Com-plete Utilities
.................. 31z/OS Sample JCL
.................. 31z/OS Sample JCL
........... 31A. Download Datasets from the Supplied Tape
.................. 32B. JCLINST1
.................. 33C. JCLINST2
.................. 33D. JCLINST3
.................. 35E. JCLINST4
.................. 35F. JCLINST5
.................. 36G. JCLINST7
.................. 37H. JCLINST8
................... 38I. JCLINST9
.................. 38J. JCLINSTB
.................. 39K. JCLINSTC

i

Overview of the Installation DocumentationInstallation

................... 40L. JCLINSTE

.................... 42VSE Sample JCL

................... 42VSE Sample JCL

................... 42A. JCLINST1

................... 43B. JCLINST2

................... 43C. JCLINST4

................... 46D. JCLINST5

.................... 47E. JCLINST6

.................... 48F. JCLINST7

................... 49G. JCLINST8

................... 50H. JCLINST9

............... 51Installation and Customization of TPF

............... 51Installation and Customization of TPF

.............. 52Installing TPF in the Host Environment

.............. 52Installing TPF in the Host Environment

................. 52TPF Facilities Overview

................. 53Installation under CICS

............... 55Installation under TSO (z/OS only)

................ 57Installation under Com-plete

.................... 58What Next?

................. 59General Logon Authorization

................ 59General Logon Authorization

................. 59User ID Considerations

................. 59Program Authorization

................. 59Password Considerations

................... 61The ACSTAB Table

.................. 61The ACSTAB Table

.................. 61ACSDEF Subtable

.................. 62ACSTBL Subtable

............... 63ACSSCHC Subtable (CICS only)

.................. 63TPFXTAB Subtable

.................... 69Passing Data

................. 70Overriding Information

................. 73CICS: Special Considerations

................ 73CICS: Special Considerations

.................. 73Printing Under TPF

............... 74Upper/Lower Case Considerations

................... 74Pre CICS 3.3

................... 75Post CICS 3.3

.......... 76Transparency (CICS and TSO) and Reverse Access (CICS)

.......... 76Transparency (CICS and TSO) and Reverse Access (CICS)

.............. 76Transparency Under CICS and TSO

................. 76The ACCESS Program

................. 76The Transfer Program

................ 77Reverse Access (CICS only)

........... 78Calling Reverse Access with Immediate Return

............ 80Calling Reverse Access with Delayed Return

................. 81Exits for the TPF Component

................. 81Exits for the TPF Component

................... 81USERID exit

................... 82NODEID exit

ii

InstallationOverview of the Installation Documentation

................... 83TPFXFEX exit

.................. 83Exits in ACCESS46

............... 84Starting Access from a User Program

............... 84Starting Access from a User Program

iii

Overview of the Installation DocumentationInstallation

Overview of the Installation Documentation
This documentation contains all information required to install Com-plete 6.3 as a first-time installation
on all supported platforms, and provides migration procedures for sites wishing to migrate from an earlier
version of Com-plete.

If yours is a first-time installation, refer to the System Programming documentation for details as to
customizing the system to the needs of your site once Com-plete is successfully installed.

The Com-plete installation documentation is organized as follows:

Installation and
Migration

Describes procedures for installing Com-plete on the
supported operating systems, including sample JCL.

Installation and
Customization of TPF

Describes procedures for installing and customizing the
TPF component in the supported environments.

1

Overview of the Installation DocumentationInstallation

Installation and Migration
This part of the Com-plete installation documentation describes installation procedures for z/OS and VSE
and provides sample JCL for installation jobs.

This information is organized under the following headings:

General Information

z/OS Installation

VSE Installation

Migration

z/OS Sample JCL

VSE Sample JCL

2

InstallationInstallation and Migration

General Information
This chapter covers the following topics:

Supported Operating Systems

Installation Jobs

Using System Maintenance Aid

Installation Data Set Naming Convention

Supported Operating Systems
Com-plete 6.3 runs under the most current levels of the IBM operating systems z/OS and VSE. In this
documentation, the terms "z/OS" and "VSE" are used to refer to all supported levels.

Supported levels of z/OS:

Lowest Supported:OS/390 2.8

Highest Tested: z/OS 1.4

Supported levels of VSE:

Lowest Supported:VSE/ESA 2.5

Highest Tested: VSE/ESA 2.7

Note:
The lower level of the supported operating systems indicated above is the more important, as
Com-plete 6.3 does NOT support any release before this level. The higher level is used as a
general indicator, as the Com-plete code is upward-compatible and therefore can run on a higher
level of the operating system. However, you are recommended to contact Com-plete support if
you wish to install the product under an operating system level that falls outside the indicated
range.

Installation Jobs
The installation of SOFTWARE AG products is performed by installation jobs. These jobs are either
created "documentationly" or generated by SYSTEM MAINTENANCE AID (SMA).

For each step of the installation procedure described in this section, the job number of a job performing
the respective task is indicated. This job number refers to an installation job generated by SMA.

If you are not using SMA, an example installation job of the same number is provided in the installation
job library on the Com-plete installation tape; you must adapt this example job to your requirements.
Please note that the installation job numbers on the tape are preceded by a product code.

3

General InformationInstallation

It is always advisable to have the distributed examples available, and you are therefore recommended to
save modified examples in an installation specific data set, for example COM.USER.SOURCE.

Note:
On VSE systems, all example jobs are cataloged with MEMBERTYPE=J.

All output classes are specified as "?", indicating that the output class should be taken from the job card.
You must set the class before submitting the job.

Using System Maintenance Aid
Information on using Software AG’s System Maintenance Aid (SMA) for the installation process is
provided by the System Maintenance Aid documentation.

Installation Data Set Naming Convention
Throughout all Com-plete documentation, the various Com-plete data sets are consistently referred to by
the same name and the Com-plete short ID, if applicable. You must change these names to reflect your
installation standards and/or to enable the installation of multiple copies of Com-plete (see the description
of Com-plete’s files in the Com-plete System Programming documentation)

Below is a list of the data sets together with a description of their content and an indication of how they
are created. These data set names refer to the installation data sets of the current release. See also the
contents of the installation tape on the report of your tape creation system.

All Operating Systems:

COM.COMSYS.xxxx

These are the Com-plete system files in VSAM REPRO format. They are created during the first
part of the installation process and contain all data sets that must be loaded into the Com-plete
COMSYS files.

COM.SPOOL

This is the printout spool / message data set and must be defined as a VSAM data set. It is used
by Com-plete to hold messages and printouts created using the Com-plete printout spooling and
message switching facilities. It is created and initialized as part of the standard installation
process.

COM.SD

This data set is used by Com-plete to hold SD files and dumps created during Com-plete
execution. It is allocated and initialized as part of the installation process and must be defined as
a VSAM data set.

z/OS only:

COM.SOURCE

4

InstallationGeneral Information

This is the source data set distributed with Com-plete. It is created as the first part of the
installation process and contains all source members necessary to install and work with Com-plete (for
example, macros, sample JCL, sample exits).

COM.LOAD

This is one of the two load libraries containing the Com-plete base system. It is created during
the first part of the installation process and contains the Com-plete specific load modules.

APS.LOAD

This is the load library containing the Software AG Application Server. It is created during the
first part of the installation process and contains modules which can be shared between
Com-plete and other Software AG products.

COM.MAPS

This data set is used to contain any maps that users of Com-plete can create or modify using the
Com-plete utility UMAP (see the Com-plete Utilities documentation). It is allocated during
standard installation and is initially empty.

COM.USER.LOAD

This data set is a load library used for user modules and/or customized Com-plete modules. It is
allocated during standard installation processing.

COM.USER.SOURCE

This data set is a user data set which you can use to store sample members from the distributed
source data set which must be changed for the installation. You can use this data set to ensure
that the distributed samples stay intact. It is allocated during standard installation processing.

VSE only:

COM.LIBRARY

This data set is created as the first part of the installation process and contains all members
necessary to install and work with Com-plete (for example, macros, sample JCS, sample exits).

COM.DUMPFILE

This Com-plete file must be defined as a VSAM data set. It is used by Com-plete to save the
abend information created during an abnormal termination of Com-plete. It is allocated as part
of the installation process.

COM.USER.LIBRARY (Sublib=SAGLIB.COMUSER)

This data set is a load library used for user modules and/or customized Com-plete modules. This
data set can also be used to store example members from the supplied source data set that must
be changed for your installation. Use this data set to ensure that the supplied samples stay intact.
This data set is allocated during standard installation processing.

5

General InformationInstallation

z/OS Installation
The installation steps described in this document must be followed in sequence in order to install
Com-plete successfully. You are recommended to use the provided examples up to successful
initialization in order to ensure that the installation was successful. Once a functional system is available,
you can start customizing the product as required.

The installation tape is created using IBM standard labels with a volume serial number of COMvrs. The
tape can be ordered in any format supported by the SOFTWARE AG tape system.

Notes:

1. The notation vrs in the table below stands for version, release and system maintenance level.
2. For a description of installing the ADASVC, refer to the Adabas documentation.
3. The Com-plete Batch utilities require access batch (that is, the Adabas SVC must be installed).

This document covers the following topics:

The Installation Tape

Installation Steps

Startup Procedure

What Next?

The Installation Tape

Tape Contents

Note:
The files may not be on the installation tape in the order shown below: please consult the report of your
tape creation system. There may be no patch level libraries for a component if this is a new release of the
respective component.

6

Installationz/OS Installation

File Nr. File Name Description

1 SMT111.TABS SMA tables

2 COMvrs.SRCE Source data set

3 COMvrs.SRCT TPF source data set

4 COMvrs.LOAD Load library

5 COMvrs.LOA3 TPF load library

6 COMvrs.BASE System file

7 COMvrs.USER User ID file

8 COMvrs.CTLG Catalog file

9 COMvrs.NS22 NSPOOL INPL data set

10 COMvrs.JOBS Com-plete sample JCL library

11 APSvrs.SARG Not currently used with Com-plete

12 APSvrs.SXML Not currently used with Com-plete

13 APSvrs.LB00 Not currently used with Com-plete

14 APSvrs.LD00 SMARTS load library

15 APSvrs.LE00 Not currently used with Com-plete

16 APSvrs.SRCE SMARTS source library

17 APSvrs.LDnn SMARTS load library update (current patch level)

18 APSvrs.SRnn SMARTS source library update (current patch level)

19 HTPvrs.LOAD HTTP server load library

20 HTPvrs.SRCE HTTP server sample source library

21 HTPvrs.JOBS HTTP server sample JCL library

22 HTPvrs.INPL HTTP server INPL data set

23 HTPvrs.GIFS PDS containing GIF images for Natural Web Interface demo

24 HTPvrs.Lnnn Most current patch level of HTPvrs.LOAD

25 HTPvrs.Snnn Most current patch level of HTPvrs.SRCE

26 HTPvrs.Innn Most current patch level of HTPvrs.INPL

Copying Contents of the Tape to Disk

Step 1: Unloading the Tape

1. Copy all files on the installation tape to disc using the IEBCOPY utility for the source and load data
sets, and the IEBGENER utility for the system data. Please refer to section z/OS Sample JCL for
sample JCL.

7

z/OS InstallationInstallation

Note:
APSvrs.LDnn is mandatory for Com-plete 6.3.

2. Check for a README file on the delivered source. If a README file exists, it may contain
important information concerning the installation and migration procedure.

Installation Steps
Step 1: Authorize Com-plete

Note:
Com-plete must run as an authorized user. To achieve this, you need only place module TLINxx in an
authorized data set, where xx can stand for "OS" for z/OS systems . Use one of the following alternative
steps.

Copy the module from the APSvrs.LDnn to a library that is already authorized and use the library as
the STEPLIB for Com-plete. Sample JCL to copy the module is contained in member JCLINST1. A
sample link job for the module is provided in JCLINST9.

Note:
If you do not use JCLINST1, you must ensure that whatever method you use to copy the module
retains the correct AMODE/RMODE attributes and authorization code for the module.

Or:
Authorize the distributed Com-plete load library permanently by adding an entry for the data set in
member IEAAPFnn of library SYS1.PARMLIB, where nn is the suffix used at your site.

Note:
This requires an IPL of the system. You can avoid having to perform an IPL for the initial installation
if you have a product installed that allows automatic authorization of the data set.

Step 2: Allocate and Initialize the Com-plete Non-VSAM Data Sets

Allocate the data sets needed to run Com-plete by modifying sample job JCLINST2 to reflect
appropriate size and placements of data sets.

This job allocates all non-VSAM data sets:

COM.USER.SOURCE
COM.USER.LOAD
COM.MAPS

Step 3: Allocate and Initialize the Com-plete VSAM System Data Containers

Only for a new installation:

Allocate, initialize and load the Com-plete system information data sets by modifying sample job
JCLINST3 to reflect appropriate size and placement of the files. Please refer to the Com-plete Files
and Associated User Files in the Com-plete System Programming documentation for more
information on this VSAM file.

8

Installationz/OS Installation

Step 4: Allocate and Initialize the Capture Data Set(s)

Required only if capture is used at your installation.

Com-plete capture data sets are defined as VSAM data sets in the current version. Sample job
JCLINST4 provides JCL to allocate and initialize two capture data sets. You must modify the job to
reflect appropriate size and placement of the capture data sets.

Step 5: Allocating and Initializing the Com-plete SD Dataset

Required.

The Com-plete SD dataset must be defined as a VSAM dataset in the current version. For detailed
information on this file, please refer to the Com-plete Files and Associated User Files in the
Com-plete System Programming documentation. To allocate and initialize the SD dataset, modify
sample job JCLINSTE to reflect your requirements and run this job.

Step 6: Allocate and Initialize the Com-plete Spool Data Set

Required.

The current version of Com-plete requires the spool data set to reside on a VSAM file. To allocate
and initialize this file, modify sample job JCLINST5 to reflect appropriate size and placement of the
data set. Then run the job.

Note:
The DD name used for this dataset in the Com-plete startup procedure must be COMSPL.

Step 7: Install the Com-plete Batch Interface

Required.

The Com-plete BATCH utilities and migration jobs require ACCESS when performing some or all of
their functions.

Batch applications that use Com-plete services communicate with the target Com-plete via ACCESS. This
communication is based on an Adabas SVC (ACCESS SVC) and a DBID (ACCESS NODE ID).

The Com-plete BATCH interface module loads a module with name ACSTAB and search this module for
an entry name BATCH.

1. Modify the sample ACSTAB module on the source data set to reflect the system requirements for
SVC and NODE ID.

2. Assemble and linkedit the module into the COM.USER.LOAD library. Modify sample job
JCLINSTF to do this. The library specified as SYSLMOD must then be contained in the STEPLIB
DD chain of the batch jobs.

Note that the DBID chosen may be greater than 255 and that the value of both DBID and SVC must
correspond to the values of ACCESS-ID and ACCESS-SVC specified in the SYSPARM member.

9

z/OS InstallationInstallation

Step 8: Assemble and Link the Adabas Link Module

This module is delivered in source format as ADALCO on the Adabas distribution libraries. It must
be assembled and linked in to a dataset contained in the COMPLIB concatenation.

If the version of Adabas you use is less than 6.3, the following source change must be applied to
module ADALCO before assembly:

Locate the line

BP GOTWAIT

and replace it by

BNZ GOTWAIT

Note:
This module must be linked with AMODE=31

Step 9: Eligible Device Table Considerations

Required only if you are installing Com-plete under versions of z/OS prior to ESA V4.

The COM.SOURCE data set contains the operating system-dependent module UDSEDT. This module
interrogates the EDT (Eligible Device Table) for UDS. The supplied module runs for all levels of z/OS
after V4. If you are installing Com-plete under an z/OS version prior to ESA V4, proceed as follows:

1. Simply assemble the UDSEDT module (the module itself determines the level of z/OS for which it is
being assembled).

2. Relink UDS using the linkedit step within the applicable operating system link job. See the
description of Modifications to Com-plete Modules in the Com-plete System Programming
documentation for more information on Com-plete linkedits.

See the System Programming documentation for more details on updating Com-plete utilities.

Step 10: Install the Com-plete High Level Language Interface

Optional.

Applications that use Com-plete functions must be linked with the Com-plete high level language
interface (HLLI) modules. These modules provide a standard interface between the application and
Com-plete.

These modules are provided on the supplied load data set. If you are migrating from a previous
version of Com-plete, some applications may need to be relinked with the new version of the HLLI
modules. For details, refer to the description of Migration procedures.

Step 11: Install the JES Server Interface

The JES Interface modules are distributed in source to facilitate support of different levels of JES. DO
NOT modify the code else Software AG cannot provide support for the modules.

10

Installationz/OS Installation

The highest JES level supported is indicated in the source member. If the JES to which you wish to
interface is at a higher level it might work, however it is recommended to contact the local support center
for any updates.

The JES Interface uses the Com-plete sysparm SERVER to initialize, terminate and communicate with the
JES interface server. Prior to defining any Com-plete sysparms, you must follow one of the following
procedures.

1. Installing the Common JES2/JES3 Server Interface

This interface requires the following prerequisites:

OS/390 Version 2.9 or above; z/OS 1.1 and above

JES2 The PTFs for APARs OW44349, OW52411, OW55671, OW55856 and
OW57486 must be applied.

JES3 The PTFs for APARs OW34753, OW36022, OW49881, OW50990,
OW56608, OW57110, OA01553, OA01715 and OA02735 must be
applied. See also Information APAR II11784 for recommended JES3 SAPI
maintenance.

1. For JES2, assemble TTJ2MVS and TTJIMVS using your current JES2 MACLIB. As an
example you can use JCLINSTB.

For JES3, assemble TTJ3MVS and TTJIMVS using your current JES3 MACLIB. As an
example you can use JCLINSTB.

2. Add the following SERVER Statement to the Com-plete sysparms:

For JES2:

SERVER=(ssss,TLINJES2)

For JES3:

SERVER=(ssss,TLINJES3)

where:

ssss is a unique server name within your Com-plete.

2. If your IBM OS version does not meet the prerequisites to use the common JES interface, you can
still use the old JES interfaces JES2SERV and JES3SERV. They are distributed in source to facilitate
the support of different levels of JES. DO NOT modify the code, or Software AG cannot provide
support for the modules anymore.

Installing the JES2 Server Interface

1. Assemble the JES2 Server interface module JES2SERV.

11

z/OS InstallationInstallation

The JES2SERV module found on the source library must be assembled using the JES2
SYS1.SHASMAC (OS/390) or SYS1.HASPSRC (z/OS) data set for the JES2 with which you wish to
work and the SYS1.MACLIB and SYS1.AMODGEN (SYS1.MODGEN for ESA V4) under which the
JES2 subsystem will work. Member JCLINSTB on this source data set is a sample JCL stream to do this.
You can give the load module resulting from this assembly and link any name you like.

2. Assemble the z/OS Active display format module TTJIMVS.

The TTJIMVS module found on the source library must be assembled using the SYS1.MACLIB
and SYS1.AMODGEN (SYS1.MODGEN for ESA V4) for the z/OS level on which the JES2 interface
will work. Member JCLINSTC on this source data set is a sample JCL stream to do this. The load module
resulting from this assembly and link must be called TTJIMVS.

Note:
The two modules created by the jobs as described in steps 1 and 2 above must be linkedited with
RMODE=ANY and AMODE=31, otherwise abends may occur at initialization.

3. Specify the SERVER sysparm as follows:

SERVER=(ssss,TLINJES2,mmmmmmmm,subs)

where:

ssss is a unique server name within your Com-plete (e.g., ’JES2’).

mmmmmmmm is the name of the assembled and linked JES2 module.

subs is the name of the JES2 subsystem on your system. The
default is "JES2". Use this parameter if your JES2 system has
a different name, or if you have more than one JES2
subsystems installed.

For example, the statement

SERVER=(JES,TLINJES2,JES2SERV,JES2)

will cause Com-plete to use the JES2 server module JES2SERV, which will in turn attempt to
interface with JES2 subsystem JES2, while the Com-plete server name will be JES.

Note:
If an error occurs during startup, a return and reason code is written in the message to the
console. The reason codes can be found in member TTJIEQU on the supplied source dataset.

Installing the JES3 Server Interface

1. Allocate the JES3 communication file.

Note:
Applies only when installing Com-plete for the first time.

The installation job JCLINST7 allocates and initializes the z/OS file used by the DSP and the
JIM. After this installation job has successfully completed, add the following DD card to the
Com-plete start up procedure.

12

Installationz/OS Installation

//UQJ3JOBS DD DSN=COM.JES3.UQJOBS,DISP=SHR

and add the following DYNALLOC statement to the JES3 initialization deck.

DYNALLOC,DDNAME=UQJOBS,DSNAME=COM.JES3.UQJOBS

2. Assemble the JES3 interface modules JES3SERV and IATUQJ3.

The JES3 modules JES3SERV and IATUQJ3 found on the source library must be assembled
using the JES3 SYS1.JES3MAC data set for the level of JES3 with which you work and the
SYS1.MACLIB and SYS1.AMODGEN (SYS1.MODGEN for ESA V4) under which the JES3
subsystem will work.

Member JCLINST8 is a sample JCL stream to do this.

Note:
Both JES3SERV and IATUQJ3 contain assembly variables which must be set to correspond to
the version of JES3 under which they are to run. Module IATUQJ3 is upward compatible with
previous releases of Com-plete (and also Natural system server).

The assembled and linked JES3SERV module must be placed in a load library contained in the
COMPINIT concatenation. The module IATUQJ3 must be placed in a load library contained in
the JES3 startup concatenation.

3. Add the DSP dictionary entry.

Note:
Applies only when installing Com-plete for the first time.

Add a DSP dictionary entry for the UQJ3 DSP, this update applies to the JES3 module
IATGRPT.

You must first verify that the USERMOD name (SAG0001) and the sequence numbers do not
conflict with existing installation modifications to JES3.

The following SMP statements are a sample to install the UQJ3 DSP entry for XA22
(JES3/HJS2220).

//SMPPTFIN DD *
++ USERMOD (SAG0001)
++ VER (Z038) FMID(HJS2220)
++ SRCUPD (IATGRPT)
./ CHANGE NAME=IATGRPT
 TITLE ’DSP FOR UQJ3’
SAG001
*--
*SAG001 DSP DIRECTORY ENTRY FOR UQJ3 DSP
 SAG001
*--
*SAG001
UQJ3 IATYDSD PRTY=10,XABLE=YES,DRVR=IATUQJ3
SAG001
 SPACE
SAG001
//SMPCNTL DD *
 SET BDY(GLOBAL) .

13

z/OS InstallationInstallation

 RECIEVE S(SAG0001) SYSMOD .
 SET BDY(XATRGZN) .
 APPLY S(SAG0001) .
/*

Once the above changes have been made, restart JES3 to pick them up. A HOTSTART restart
can be done and the Com-plete DSP can then be started by entering "*X UQJ3", the DSP will
continue to run and will restart itself over HOTSTART and WARMSTARTs.

Note:
The DSP must be active for the first time before you start Com-plete.

4. Specify the SERVER sysparm as follows:

SERVER=(ssss,TLINJES3,mmmmmmmm)

where

ssss is a unique server name within your Com-plete (e.g. JES3)

mmmmmmmm is the name of the assembled and linked JES3 module (default
is JES3SERV)

Step 12: Install the UDEBUG Environment

Optional.

Com-plete provides an online debugging utility (UDEBUG). In order to establish the working
environment, proceed as follows:

1. Allocate two UDEBUG profile and symbol datasets as described in Com-plete Files and Associated
User Files in the System Programming documenation.

2. Include the list of required UDEBUG residentpage modules in your SYSPARM member. A list of
these modules is given in member DBUGSAMP in the supplied source datasets.

The UDEBUG facility is described in detail in the Com-plete Utilities documentation.

Step 13: Enable VTAM Interface

To enable the VTAM interface, an ACB and Logmodes must be defined in the VTAM libraries.
Refer to the description of the VTAM interface in the Com-plete System Programming
documentation for the required definitions and parameters.

Step 14: Check Com-plete Startup Parameters (SYSPARM)

A sample SYSPARM member is distributed in the Com-plete source library. This member can be
used as a base for Com-plete customization. Although most parameters need not be changed, ensure
that the following parameters reflect your environment:

14

Installationz/OS Installation

Parameter Value

ACCESS-SVC Specify the correct Adabas SVC number (see Step 7).

ACCESS-ID Specify the database ID for ACCESS (see Step 7).

PATCHAR Choose a unique single character for this installation (see Com-plete
Startup Procedure in the System Programming documentation).

SECSYS Specify the security system running at your site (see Software
Interfaces in the Com-plete System Programming documentation for
details on the SECSYS parameter).

SERVER * Required for Com-plete 6.3 and above:

SERVER=(OPERATOR,TLINOPER)SERVER=(COMPLETE,TLINCOMP)

Optional:
Code one SERVER statement for each installed server according
to the required syntax:

JES SERVER See Step 11 above.

CONSOLE SERVER See Extended Console Server in the
System Programming
documentation.

Natural Buffer Pool
Manager

See Natural Buffer Pool Manager in
the System Programming
documentation.

These SERVER statements must be put after the Com-plete server.

VTAMAPPL Must specify Com-plete’s ACB name (see Step 13).

* You can optionally code one SERVER statement for each installed server according to the required
syntax:

Step 15: Install NSPOOL

Optional.

The printout spooling facility NSPOOL is described in the Com-plete Application Programming
documentation. The required dataset for running NSPOOL is on the Com-plete installation tape and is
loaded as part of the Com-plete installation. The dataset name is COMvrs.NS22.

1. Run an INPL of NSPOOL.

2. If NSPOOL is to be used in a Natural environment running under Natural Security, you must stow
the following modules in the Natural Security system library; otherwise, proceed to the next point.

15

z/OS InstallationInstallation

SPSE01-N,
SPSE02-S,
SPSE01-&,
SPSE02-&,
SPSE03-&
SPAPPL-N *
SPUSER-N *

* required only for Natural Security version 2.2.8 and above.

See also the section Default Authorization below.

3. With Natural 2.2, you must place the following modules in the Natural system library and delete
them from the NSPOOL library:

SPSEC01N
SECERROR *
NSCDAU *
NSCDU *
NSCLU-G *
NSCLU-M *
SNAAREXT *
SNAASEXT *
SNAUREXT *
SNAUSEXT *

* not required for Natural Security version 2.2.8 and above

4. Set the parameter MEMRES in the NATPARM module to 10k to allow Natural to load the program
at execution time.

5. The Natural startup application (for example, NAT22) must be cataloged with ULIB as PV
(privileged).

Step 16: Install the POSIX Server

The Telnet tn3270 support, HTTP server and LPD print server support of Com-plete 6.3 require the
POSIX runtime to be active.

All load modules used by the POSIX runtime are contained in APSvrs.LDnn which is mandatory for
Com-plete 6.3 even if you do not plan to use any POSIX-based components.

1. To activate the POSIX runtime, add the following SERVER statement to your SYSPARMs:

SERVER=(POSIX,PAENKERN)

Note:
Servers are started in the order in which their SERVER= statements are found in the SYPARMs. The
servers OPERATOR, POSIX, COMPLETE must be defined in this order.

2. POSIX runtime parameters can be specified directly in the Com-plete SYSPARM member, or in a
separate member concatenated to the Com-plete SYSPARMs in the startup JCL procedure. The
POSIX runtime may require additional parameters to be set, please refer to the SMARTS Installation
and Operations for a detailed description of those parameters. In particular, the above mentioned
TCP/IP based Com-plete components need to know which TCP/IP stack to use. This definition must
be made using the following POSIX runtime parameter:

16

Installationz/OS Installation

CDI_DRIVER=(’tcpip,PAAxSOCK [,...]’)

The HTTP server requires an additional CDI driver definition:

CDI_DRIVER=(’cgistdio,HAANPCGI’)

Note:
Servers are started in the order in which their SERVER= statements are found in the SYPARMs. The
servers OPERATOR, POSIX, COMPLETE must be defined in this order.

Step 17: Activate the TELNET Server

Prerequisite: the POSIX server must be installed.

The TELNET server is activated by simply assigning an IP port number for it. Contact the IP
administrator of your host for a port number, and specify it using the Com-plete startup parameter
TELNETPORT=port_number.

No SERVER= statement is required for the TELNET server.

Step 18: Install the HTTP Server

Install the HTTP server as described in the HTTP Server documentation.

In general, the following steps are necessary:

1. Make sure the POSIX runtime is setup properly, including the CDI drivers (see above).

2. Add a SERVER statement to your SYPARMs:

SERVER=(HTTP,HAENSERV,CONF=/my/parmlib/haanconf).

Note that this server definition must be placed behind the definitions of the servers OPERATOR,
POSIX, and COMPLETE in the SYSPARMs.

3. Use the sample module HAANCONF from the HTTP server source library as a pattern to setup your
own configuration. This is the place where you specify, for example, the port number your HTTP
server will be using.

Startup Procedure
Com-plete can be run as a started task or as a job. In order to start Com-plete, proceed as follows:

Step 1: Modify Procedure COMJCL

Review sample procedure COMJCL in the source library for correct data set names. Then either copy
the procedure to a procedure library to be started, or use it as a basis for a job to be submitted.

Note:
For more information on the data sets and their purpose, see the Com-plete System Programming
documentation.

17

z/OS InstallationInstallation

Step 2: Initialize Com-plete for the First Time

Start Com-plete either by submitting the created job or starting the created procedure. Monitor the
startup messages carefully for any signs of problems. When the initialization is complete, a message
to that effect is written to the operator console.

A message is also sent to the console to notify you that the VTAM and ACCESS interfaces have
initialized.

Step 3: Log On

Log on through VTAM to the specified VTAM application name. The Com-plete ULOG menu is
displayed, prompting you for user ID and password. Logon to Com-plete using user ID SAGADMIN
and password ADMIN.

This user ID has a definition on the Com-plete system data container with the required authorization
to define more user IDs to the system using the user ID maintenance facility (see the Com-plete
Utilities documentation).

After defining other user IDs, you are recommended to change the password for user SAGADMIN
and use this user ID in emergency cases only.

What Next?
Com-plete is now up and ready for work. How you continue depends on whether you have installed
Com-plete for the first time or whether you are migrating from a previous version.

If you have installed Com-plete for the first time, no further migration is necessary. You can continue
with customization steps described in the System Programming documentation and the Complete
Utilities documentation.

If you are migrating from a previous version of Com-plete, see Migration.

18

Installationz/OS Installation

VSE Installation
The installation steps described in this section must be followed in sequence in order to install Com-plete
successfully. You are recommended to use the provided examples up to successful initialization in order
to ensure that the installation was successful. Once a functional system is available, you can start
customizing the product as required.

All sample JCL referred to in the installation steps is illustrated inVSE Sample JCL.

This document covers the following topics:

The Installation Tape

Installation Steps

Startup Procedure

What Next?

The Installation Tape

Tape Contents

The installation tape is created using IBM standard labels with volume serial number COMvrs. The tape
can be ordered in any format supported by Software AG.

19

VSE InstallationInstallation

File Nr. File Name Description / Remarks

1 SMT111.TABS SMA tables

2 COMvrs.BASE System file

3 COMvrs.USER User ID file

4 COMvrs.CTLG Catalog file

5 COMvrs.NS22 NSPOOL INPL data set

6 COMvrs.LIBR

Library data set in LIBR backup format. Rewind the
tape and use the number in the first column to operate
the tape using the statement
// MTC FSF ...

7 APSvrs.LIBR

Library data set in LIBR backup format. Rewind the
tape and use the number in the first column to operate
the tape using the statement
// MTC FSF ...

8 APSvrs.Lnnn Most current patch level of APSvrs.LIBR

9 HTPvrs.LIBR

Library data set in LIBR backup format. Rewind the
tape and use the number in the first column to operate
the tape using the statement
// MTC FSF ...

10 HTPvrs.INPL HTTP server INPL data set

11 HTPvrs.Lnnn Most current patch level of HTPvrsLIBR

12 HTPvrs.Inn Most current patch level of HTPvrsINPL

Notes:

1. The files may not be on the installation tape in the order shown above: please consult the report of
your tape creation system.

2. The notation vrs stands for current version, release and maintenance level.
3. There may be no patch level libraries for a component if this is a new release of the respective

component.

Copying Contents of the Tape to Disk

Step 1: Unload the Tape

Copy the files on the installation tape to disk using the LIBR utility for the Com-plete library. Refer
to VSE Sample JCL for sample JCL (JCLINST1).

Check for a README file on the delivered source. If a README file exists, it may contain
important information concerning the installation and migration procedure.

Note:
Restore of the APSvrs.LIBR dataset is mandatory for Com-plete 6.3.

20

InstallationVSE Installation

Installation Steps
Step 1: Create the Com-plete User Data library

The SAGLIB.COMUSER library contains installation-dependent modules and user programs. This
sublibrary is recommended, since future maintenance to the system may replace the private
distribution libraries completely, thereby destroying any user modules in that library.

Create the library using the sample job JCLINST2 (Sublib=SAGLIB.COMUSER).

Step 2: Allocate and Initialize the Com-plete VSAM System Data Containers

Only for a new installation:

Allocate, initialize and load the Com-plete system information data sets by modifying sample job
JCLINST4 to reflect appropriate size and placement of the files. Please refer to the Com-plete Files
and Associated User Files in the Com-plete System Programming documentation for more
information on this VSAM file.

Step 3: Allocate and Initialize the Capture Data Set(s)

Required only if capture is used at your installation.

Com-plete capture data sets are defined as VSAM data sets in the current version. Sample job
JCLINST5 provides JCL to allocate and initialize two capture data sets. You must modify the job to
reflect appropriate size and placement of the capture data sets.

Note:
In VSE, the Com-plete account records (SMF-records) are written to the capture data set.

Step 4: Allocate and Initialize the Com-plete SD Dataset

The Com-plete SD dataset must be defined as a VSAM dataset in the current version. For detailed
information on this file, please refer to the Com-plete Files and Associated User Files in the
Com-plete System Programming documentation. To allocate and initialize the SD dataset, modify
sample job JCLINST6 to reflect your requirements and run this job.

Step 5: Allocate and Initialize the Com-plete VSAM Spool Data Set

Required.

The Com-plete spool data set reside on a VSAM file. To allocate and initialize this file, modify
sample job JCLINST7 to reflect appropriate size and placement of the data set. Then run the job.

Step 6: Allocate and Initialize the Com-plete Dump File

Required.

The Com-plete Dump File data set must be defined as a VSAM dataset. For detailed information on
this file, refer to the Com-plete System Programming documentation. To allocate and initialize the
Dump File dataset, modify sample job JCLINST8 to your requirements and run the job.

21

VSE InstallationInstallation

Step 7: Update VTAM Definitions

Required only if the Com-plete interface with VTAM is to be used.

To enable the Com-plete VTAM interface, you must define an ACB to VTAM in the PRD2.CONFIG
data set (MEMBER=VTMAPPL.B). The following sample definition generates an ACB called
"COM46" with the necessary privileges for Com-plete:

VBUILD TYPE=APPL
COM46 APPL AUTH=(ACQ,PASS)

To use this feature, you must specify the Com-plete system parameter =COM46.

Please refer to VTAM documentation for more information.

Step 8: Install the Com-plete Batch Online Interface

Required.

The Com-plete BATCH utilities and migration jobs require ACCESS when performing some or all of
their functions.

Batch applications that use Com-plete services communicate with the target Com-plete via ACCESS. This
communication is based on an Adabas SVC (ACCESS SVC) and a DBID (ACCESS NODE ID).

The Com-plete BATCH interface module loads a module with name ACSTAB and search this module for
an entry name BATCH.

1. Modify the sample ACSTAB module on the source data set to reflect the system requirements for
SVC and NODE ID.

2. Assemble and linkedit the module into the SUB=SAGLIB.COMUSER library. Modify sample job
JCLINSTF to do this.

Note that the DBID chosen may be greater than 255 and that the value of both DBID and SVC must
correspond to the values of ACCESS-ID and ACCESS-SVC specified in the SYSPARM member.

Step 9: Set the Com-plete System Parameters (SYSPARM)

Sample job COMJCVSE refers to a set of Com-plete parameters in COMPARM.COMTEST1. Copy
them to the library SAGLIB.COMUSER and ensure that the following parameters reflect your
installation requirements:

PATCHAR Choose a unique single character value for your installation.

VTAMAPPL Must be changed to the ACB name you have set up in installation step
Update VTAM Definitions.

ACCESS-SVC Must be set to the Adabas SVC number (see installation step Install
the Com-plete Batch Online Interface).

ACCESS-ID Must be set to the database ID (see installation step Install the
Com-plete Batch Online Interface).

22

InstallationVSE Installation

The following two statements are mandatory in Com-plete 6.3:

SERVER=(OPERATOR,TLINOPER)
SERVER=(COMPLETE,TLINCOMP)

The SERVER statements for Console, Natural and Power must be put after the Com-plete server.

Step 10: Add VSE/POWER Interface

Add the following statement after the SERVER statement for COMPLETE:

SERVER=(POWER,TLINPOW0)

Step 11: Install the Com-plete High Level Language Interface

Optional.

Applications that use Com-plete functions must be linked with the Com-plete high level language
interface modules. These modules provide a standard interface between the application and
Com-plete.

These modules are provided on the supplied load data set. If you are migrating from a previous
version of Com-plete, some applications may need to be relinked with the new version of the HLLI
modules. For details, see Migration.

Step 12: Install the UDEBUG Environment

Optional.

Com-plete provides an online debugging utility (UDEBUG). In order to establish the working
environment, proceed as follows:

1. Allocate two UDEBUG profile and symbol datasets by running job JCLINST1 and include these
datasets in the Com-plete startup procedure.

2. Include the list of required UDEBUG residentpage modules in your SYSPARM member. A list of
these modules is given in member DBUGSAMP in the supplied source datasets.

The UDEBUG facility is described in detail in the Com-plete Utilities documentation.

Step 13: Installing the Extended Console Server (UQ M Function)

Specify a SERVER sysparm for the Console Server:

Syntax:

SERVER=(name,TLINCONS,slots,consname,hcset)

where:

23

VSE InstallationInstallation

name is a unique server name within Com-plete

TLINCONS is the name of the server initialization program

slots specify the number of messages held in the incore table

consname is the console name for MCSOPER Macro. It must be unique in
the system.

hcset specifies wether the hardcopy set is to be received by this console.
Default is N.

Example:

SERVER=(CONSOLE,TLINCONS,2000,COMP51A,Y)

Step 14: Install NSPOOL

Optional.

The printout spooling facility NSPOOL is described in the Com-plete Application Programming
documentation. The required dataset for running NSPOOL is on the Com-plete installation tape and is
loaded as part of the Com-plete installation. The dataset name is COMvrs.NS22.

1. Run an INPL of NSPOOL.

2. If NSPOOL is to be used in a Natural environment running under Natural Security, you must stow
the following modules in the Natural Security system library; otherwise, proceed to the next point.

SPSE01-N,
SPSE02-S,
SPSE01-&,
SPSE02-&,
SPSE03-&
SPAPPL-N *
SPUSER-N *

* required only for Natural Security version 2.2.8 and above.

See also the section Default Authorization below.

3. With Natural 2.2, you must place the following modules in the Natural system library and delete
them from the NSPOOL library:

SPSEC01N
SECERROR *
NSCDAU *
NSCDU *
NSCLU-G *
NSCLU-M *
SNAAREXT *
SNAASEXT *
SNAUREXT *
SNAUSEXT *

* not required for Natural Security version 2.2.8 and above

24

InstallationVSE Installation

4. Set the parameter MEMRES in the NATPARM module to 10k to allow Natural to load the program
at execution time.

5. The Natural startup application (for example, NAT22) must be cataloged with ULIB as PV
(privileged).

Step 15: Install the POSIX Server

The Telnet tn3270 support, HTTP server and LPD print server support of Com-plete 6.3 require the
POSIX runtime to be active.

All load modules used by the POSIX runtime are contained in APSvrs.LOAD which is mandatory for
Com-plete 6.3 even if you do not plan to use any POSIX-based components.

1. To activate the POSIX runtime, add the following SERVER statement to your SYSPARMs:

SERVER=(POSIX,PAENKERN)

Note:
Servers are started in the order in which their SERVER= statements are found in the SYPARMs. The
servers OPERATOR, POSIX, COMPLETE must be defined in this order.

2. POSIX runtime parameters can be specified directly in the Com-plete SYSPARM member, or in a
separate member concatenated to the Com-plete SYSPARMs in the startup JCL procedure. The
POSIX runtime may require additional parameters to be set, please refer to the SMARTS Installation
and Operations for a detailed description of those parameters. In particular, the above mentioned
TCP/IP based Com-plete components need to know which TCP/IP stack to use. This definition must
be made using the following POSIX runtime parameter:

CDI_DRIVER=(’tcpip,PAAxSOCK [,...]’)

The HTTP server requires an additional CDI driver definition:

CDI_DRIVER=(’cgistdio,HAANPCGI’)

Note:
Servers are started in the order in which their SERVER= statements are found in the SYPARMs. The
servers OPERATOR, POSIX, COMPLETE must be defined in this order.

If your TCP/IP connection uses an ID other than 00, insert the line

//OPTION SYSPARM=’nn’

Step 16: Activate the TELNET Server

Prerequisite: the POSIX server must be installed.

The TELNET server is activated by simply assigning an IP port number for it. Contact the IP
administrator of your host for a port number, and specify it using the Com-plete startup parameter
TELNETPORT=port_number.

No SERVER= statement is required for the TELNET server.

25

VSE InstallationInstallation

Step 17: Install the HTTP Server

Install the HTTP server as described in the HTTP Server documentation.

In general, the following steps are necessary:

1. Make sure the POSIX runtime is setup properly, including the CDI drivers (see above).

2. Add a SERVER statement to your SYPARMs:

SERVER=(HTTP,HAENSERV,CONF=/lib/sublib/haanconf.j).

Note that this server definition must be placed behind the definitions of the servers OPERATOR,
POSIX, and COMPLETE in the SYSPARMs.

3. Use the sample module HAANCONF from the HTTP server source library as a pattern to setup your
own configuration. This is the place where you specify, for example, the port number your HTTP
server will be using.

Startup Procedure
Com-plete can run in any partition. If it’s started in a dynamic partition you need Adabas with ESA
features for ACCESS support.

Step 1: Modify Procedure COMJCVSE

Review sample job COMJCVSE in the source library for correct data set names.

Note:
For more information on the data sets and their purpose, see the Com-plete System Programming
documentation.

Step 2: Initialize Com-plete System Intercept

In VSE environments, communication between the Com-plete nucleus and the user program is
established using SVC 200.

The program COMSIP is used to load the intercept module into the SVA and to put it into the chain
of VSE’s First Level Interrupt Handlers anchored in lowcore. Additional information about the
intercept module is stored into CRSVATBL, a module which must have been loaded into the SVA
using SET SDL prior to running COMSIP.

Executing the COMSIP Program

* $$ JOB JNM=COMSIP,DISP=D,CLASS=?
* $$ LST DISP=D,CLASS=A
// JOB COMSIP initialize Com-plete system adapter V51
// ASSGN SYSLST,IGN
// DLBL SAGLIB,’.....LIBRARY’
// EXTENT ,vvvvvv
// LIBDEF PHASE,SEARCH=SAGLIB.APSvrs,TEMP
// UPSI 00000000
// EXEC COMSIP,SIZE=AUTO

26

InstallationVSE Installation

// ASSGN SYSLST,UA
/*
/&
* $$ EOJ

Important:
This step should never run while another SAG product running on SMARTS (APS) is up.
CRSVATBL and COMSIP must be loaded from the same library. The modules are downward
compatible and can be used by every currently supported version of Com-plete.
If you have software from CA and/or Macro 4 installed, this step must run AFTER the initialization
of the CA system and BEFORE the initialization of Macro 4.
In a multi-processor environment, this step can only run before the second CPU is started.

Insert the following into the ASI BG JCL procedure according to the above mentioned requirements
before the START of the POWER partition so that the Com-plete SVC intercept will be installed
automatically during each IPL.

// DLBL SAGLIB,’.....LIBRARY’
// EXTENT SYS010,vvvvvv
// ASSGN SYS010,DISK,VOL=vvvvvv,SHR
// LIBDEF PHASE,SEARCH=SAGLIB.APSvrs,TEMP
SET SDL
CRSVATBL,SVA
/*
// UPSI 00000000
// EXEC COMSIP,SIZE=AUTO

Step 3: Initialize Com-plete for the First Time

Start Com-plete by submitting the created job. Monitor the startup messages carefully for any signs
of problems. When the initialization is complete, a message to that effect is written to the operator
console.

A message is also sent to the console to notify you that the VTAM interface has initialized.

Step 4: Log On

Log on through VTAM to the specified VTAM application name. The Com-plete ULOG menu is
displayed, prompting you for user ID and password. Log on to Com-plete using user ID
SAGADMIN and password ADMIN.

This user ID has a definition on the Com-plete system data container with the required authorization
to define more user IDs to the system, using the user ID maintenance facility described in the
Com-plete Utilities documentation.

After defining other user IDs, you are recommended to change the password for user SAGADMIN
and use this user ID in emergency cases only.

What Next?
Com-plete is now up and ready for work. How you continue depends on whether you have installed
Com-plete for the first time or whether you are migrating from a previous version.

27

VSE InstallationInstallation

If you have installed Com-plete for the first time, no further migration is necessary. You can continue
with customization steps described in the System Programming documentation and the Complete
Utilities documentation.

If you are migrating from a previous version of Com-plete, see Migration.

28

InstallationVSE Installation

Migration
If you are upgrading from version 6.1 to version 6.3, then all you need to do is replace your APS and
COM datasets with the new ones.

This section describes the steps required to migrate from Com-plete 5.1 to Version 6.3.

It is assumed that your current Com-plete version is 5.1.x.

This chapter covers the following topics:

Changes to the Start-up Procedure

Changes to the SYSPARMs

COMSYS Data Containers

Reducing the Thread Region Size for most Com-plete Utilities

Changes to the Start-up Procedure
Add the SMARTS Load Library

While previous versions of Com-plete used to come in one load library, Com-plete 6 is
delivered as the application server SMARTS which can be shared with other Software-AG
products, and a Com-plete-specific part. Add the application server load library APSvrs.LDnn to
your COMPLIB library chain behind the Com-plete load library.

Remove the COMPINIT Load Library Chain

If you were using a separate COMPINIT chain, Software AG recommends that you remove it.

Remove COMSYS2

The Com-plete error message texts are now delivered in load module format; the VSAM file
COMSYS.MESSAGES (DD name / DLBL name COMSYS2) is no longer used. Remove this
statement from your JCL startup procedure, keeping COMSYS1, COMSYS3, and COMSYS4
unchanged.

Log File APSLOG (z/OS-like Systems Only)

This file is used by Com-plete to log all the messages that previously went to the system
console, of course including those that still do go to the console. If you do not specify APSLOG,
then Com-plete allocates it dynamically as

//APSLOG DD SYSOUT=X

29

MigrationInstallation

Changes to the SYSPARMs
In the new application server architecture, Com-plete must be defined as a server running on SMARTS.
Also, the operator communication runs as a separate server. Please add the following two lines to your
SYSPARMs:

SERVER=(OPERATOR,TLINOPER)
SERVER=(COMPLETE,TLINCOMP)

It is now possible to wrap SYSPARM lines (after a comma within parentheses). This allows you to write
complex parameter definitions like THREAD-GROUP in a more readable way, but it implies an enhanced
syntax checking. As a consequence, parameter values containing special characters must now be enclosed
in apostrophes. For example, RECALLCHAR== must be changed into RECALLCHAR=’=’, otherwise an
error will be indicated.

COMSYS Data Containers
Software AG recommends that you backup your COMSYS files before running this upgrade program.

To upgrade your COMSYS Data Containers, run the BATCH program CSYSUPGR using sample job
JCLINSTD. Note that there is no COMvrs.ALLMSGS file on the installation tape because the messages
are now delivered in load module format. Message texts that you have translated into another language
will be converted and migrated into COMSYS4 if you define your COMSYS.MESSAGES data set as
COMSYS2 in the JCL of the upgrade job.

Reducing the Thread Region Size for most Com-plete
Utilities
The following utilities have been modified to be able run above the 16MB line:

CSPOOL, UBATCH, UCMND, UCOPY, UCTRL, UDEF, UDISP, UDUMP, UEBCB, UFLEX, UGLIB,
UHELP, UHELPM, ULIBID, ULOG, ULOGM, ULOW, UM, UMATH, UMESG, UNUMR, UPF,
UPFKS, UPROF, UPWD, USCHC, USPOOL, USTACK, UTIBGR, UTMSG, UTRAC1, UUP, UZAPS.

The COMSYS upgrade program CSYSUPGR changes the region size settings for these applications to 0
or 4K, so you must use thread extensions above the line (THSIZEABOVE=200 at least) in order to be
able to run any of these applications. Software AG recommends that you adjust any existing user exits for
these utilities so they can also run above the line. If this appears unfeasible, then use ULIB to increase the
region size again for the utilities affected. It is planned to move all remaining Com-plete utilities above the
line in one of the next releases, so it is a good idea to make plans for adjusting your user exits for those
utilities also.

In case you cannot log on to Com-plete after the upgrade because of insoluble problems with your ULOG
exit routine ULOGX1, then restore the ULIB entry for ULOG. Using BATCH utility TULIB is not an
option in this case because it also involves ULOG, but you can use standard tools like IDCAMS:

REPRO INDATASET (comsys.catalog.backup) OUTDATASET(comsys.catalog) -
FROMKEY(X’002000E4D3D6C740404040’) -
TOKEY(X’002000E4D3D6C740404040’) -
REPLACE

30

InstallationMigration

z/OS Sample JCL
This chapter contains sample JCL of the jobs referred to in the installation procedure.

A. Download Datasets from the Supplied Tape

B. JCLINST1

C. JCLINST2

D. JCLINST3

E. JCLINST4

F. JCLINST5

G. JCLINST7

H. JCLINST8

I. JCLINST9

J. JCLINSTB

K. JCLINSTC

L. JCLINSTE

A. Download Datasets from the Supplied Tape
 //JOBNAMEvalid installation job card
 //*
 //* This job downloads the datasets, as supplied on the
 //* &cmon installation tape, to disk for use during the
 //* installation procedure.
 //*
 //IEBCOPY EXEC PGM=IEBCOPY
 //SYSPRINT DD SYSOUT=*
 //SYSUT3 DD UNIT=SYSDA,SPACE=(CYL,(3,1))
 //SYSUT4 DD UNIT=SYSDA,SPACE=(CYL,(3,1))
 //*
 //SOURCEI DD DSN=COMvrs.SRCE, note 2
 // UNIT=uuuu, note 1
 // LABEL=(1,SL),
 // VOL=(,RETAIN,SER=COMvrs), note 2
 // DISP=(OLD,PASS)
 //*
 //SOURCEO DD DSN=COM.SOURCE,
 // UNIT=uuuu, note 4
 // VOL=SER=vvvvvv, note 3
 // SPACE=(CYL,(7,1,50)),
 // DISP=(NEW,CATLG,DELETE),
 // DCB=(DSORG=PO,RECFM=FB,BLKSIZE=3120,LRECL=80)
 //*
 //LOADI DD DSN=COMvrs.LOAD, note 2

31

z/OS Sample JCLInstallation

 // UNIT=uuuu, note 1
 // LABEL=(2,SL),
 // VOL=(,RETAIN,REF=*.SOURCEI),
 // DISP=(OLD,PASS)
 //*
 //LOADO DD DSN=COM.LOAD,
 // UNIT=uuuu, note 4
 // VOL=SER=vvvvvv, note 3
 // SPACE=(CYL,(18,1,200)),
 // DISP=(NEW,CATLG,DELETE),
 // DCB=(DSORG=PO,RECFM=U,BLKSIZE=6447)
 //SMDOC1 DD DSN=COMvrs.INFO, note 2
 // UNIT=uuuu, note 1
 // LABEL=(5,SL),
 // VOL=(,RETAIN,SER=COMvrs), note 2
 // DISP=(OLD,PASS)
 //SOURCEO DD DSN=COM.INFO,
 // UNIT=uuuu, note 4
 // VOL=SER=vvvvvv, note 3
 // SPACE=(CYL,(3,1,50)),
 // DISP=(NEW,CATLG,DELETE),
 // DCB=(DSORG=PO,RECFM=FB,BLKSIZE=3120,LRECL=80)
 //SYSIN DD *
 COPY INDD=SOURCEI,OUTDD=SOURCEO

 COPYMOD INDD=LOADI,OUTDD=LOADO
 COPY SNDD=SMDOC1,OUTDD=SMDOC0
 /*

Notes:

1. The "uuuu" here must be set to an installation unit name relating to the tape device to be used to load
the tape.

2. "vrs" is these cases relates to the Version, Release and SM Level of COM-PLETE being installed, for
example, the tape volser for COM-PLETE 6.3.1 would be called COM631.

3. The volser "vvvvvv" should be changed to the volume serial number upon which you wish the
dataset to be downloaded.

4. The unit "uuuu" must be changed to a unit name which is valid for the specified volume serial
number.

B. JCLINST1
//JOBNAM1 JOB.... JOB CARD INFORMATION ..
//*
//* THIS JOB COPIES THE MEMBER TLINOS FROM THE DISTRIBUTED
//* APS LOAD LIBRARY INTO AN APF AUTHORISED LIBRARY.
//*
//* THE FOLLOWING CHANGES HAVE TO BE PERFORMED BEFORE RUNNING THIS JOB:-
//*
//* 1. INSERT A VALID JOBCARD.
//* 2. CHANGE THE DATASET NAMES TO SUIT YOUR SITE’S REQUIREMENTS.
//*
//COPY EXEC PGM=IEBCOPY
//SYSPRINT DD SYSOUT=*
//IN DD DISP=SHR,DSN=APS.LDnn
//OUT DD DISP=SHR,DSN=ANY.APF.AUTHORISED.LIBRARY

32

Installationz/OS Sample JCL

//SYSIN DD *
 COPYMOD I=((IN,R)),O=OUT
 S M=TLINOS
/*

C. JCLINST2
//JOBNAM2 JOB.... JOB CARD INFORMATION ..
//*
//* THIS JOB ALLOCATES AND INITIALISES THE NON-VSAM AND USER DATA SETS.
//*
//* THE FOLLOWING CHANGES HAVE TO BE PERFORMED BEFORE RUNNING THIS JOB:-
//*
//* 1. INSERT A VALID JOBCARD.
//* 2. CHANGE PREFIX TO SUIT YOUR SITE’S REQUIREMENTS
//* 3. CHANGE UUUU TO THE REQUIRED UNIT.
//* 4. CHANGE VVVVVV TO THE REQUIRED VOLSER(S).
//*
//ALLOCATE EXEC PGM=IEFBR14
//* ROLL DATASET
//*
//* NOTE: IF YOU DECIDE TO USE VSAM ROLL DATASET(S), COMMENT OUT ALL
//* LINES OF THE R1 DD STATEMENT AND IN ADDITION TO THIS JOB,
//* RUN JOB JCLINST6.
//*
//* USER SOURCE FILE
//USERSOUR DD DSN=PREFIX.USER.SOURCE,
// DISP=(NEW,CATLG,DELETE),UNIT=UUUU,
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3120,DSORG=PO),
// SPACE=(CYL,(2,,28)),
// VOL=SER=VVVVVV
//* USER LOAD LIBRARY
//USERLOAD DD DSN=PREFIX.USER.LOAD,
// DISP=(NEW,CATLG,DELETE),UNIT=UUUU,
// DCB=(RECFM=U,BLKSIZE=6447,DSORG=PO),
// SPACE=(CYL,(10,,28)),
// VOL=SER=VVVVVV
//* USER MAP LIBRARY
//MAPS DD DSN=PREFIX.MAPS,
// DISP=(NEW,CATLG,DELETE),UNIT=UUUU,
// DCB=(RECFM=U,BLKSIZE=6447,DSORG=PO),
// SPACE=(CYL,(2,,28)),
// VOL=SER=VVVVVV

D. JCLINST3
//JOBNAM3 JOB.... JOB CARD INFORMATION ..
//*
//* THIS JOB ALLOCATES AND INITIALISES THE SYSTEM DATA CONTAINERS
//*
//* NOTE THAT YOU MAY HAVE TO RUN JOB JCLINSTD TO UPDATE THE SYSTEM
//* DATASET TO THE LATEST SM LEVEL AFTER RUNNING THIS JOB.
//*
//* PERFORM THE FOLLOWING CHANGES BEFORE RUNNING THIS JOB:
//*
//* 1. INSERT A VALID JOBCARD.
//* 2. CHANGE PREFIX TO SUIT YOUR SITE’S REQUIREMENTS
//* 3. CHANGE VVVVVV TO THE REQUIRED VOLSER.
//* 4. FOR SYSPLEX-WIDE SHARED DATASETS, ADD LOG(NONE) TO EACH CLUSTER.
//*

33

z/OS Sample JCLInstallation

//ALLBASE EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 DELETE (PREFIX.COMSYS.BASE)
 DEFINE CLUSTER(NAME(PREFIX.COMSYS.BASE) -
 VOLUME(VVVVVV) -
 INDEXED -
 RECORDSIZE(4089 4089) -
 RECORDS(512 64) -
 KEYS(16 0) -
 CISZ(4096))-
 DATA(NAME(PREFIX.COMSYS.BASE.DATA) -
 SHAREOPTIONS(2,3)) -
 INDEX(NAME(PREFIX.COMSYS.BASE.INDX) -
 SHAREOPTIONS(2,3))
/*
//ALLUSER EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 DELETE (PREFIX.COMSYS.USERDEF)
 DEFINE CLUSTER(NAME(PREFIX.COMSYS.USERDEF) -
 VOLUME(VVVVVV) -
 INDEXED -
 RECORDSIZE(2041 2041) -
 RECORDS(4096 512) -
 KEYS(16 0) -
 CISZ(4096))-

DATA(NAME(PREFIX.COMSYS.USERDEF.DATA) -
 SHAREOPTIONS(2,3)) -
 INDEX(NAME(PREFIX.COMSYS.USERDEF.INDX) -
 SHAREOPTIONS(2,3))
/*
//ALLCATLG EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 DELETE (PREFIX.COMSYS.CATALOG)
 DEFINE CLUSTER(NAME(PREFIX.COMSYS.CATALOG) -
 VOLUME(VVVVVV) -
 INDEXED -
 RECORDSIZE(313 313) -
 RECORDS(512 64) -
 KEYS(16 0) -
 CISZ(4096))-
 DATA(NAME(PREFIX.COMSYS.CATALOG.DATA) -
 SHAREOPTIONS(2,3)) -
 INDEX(NAME(PREFIX.COMSYS.CATALOG.INDX) -
 SHAREOPTIONS(2,3))
/*
//*
//INIT EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//COMSYS1 DD DSN=PREFIX.COMSYS.BASE,DISP=SHR
//COMSIN1 DD DSN=PREFIX.SYSTEM.BASE,DISP=SHR
//COMSYS3 DD DSN=PREFIX.COMSYS.USERDEF,DISP=SHR
//COMSIN3 DD DSN=PREFIX.SYSTEM.USERDEF,DISP=SHR
//COMSYS4 DD DSN=PREFIX.COMSYS.CATALOG,DISP=SHR
//COMSIN4 DD DSN=PREFIX.SYSTEM.CATALOG,DISP=SHR
//SYSIN DD *

34

Installationz/OS Sample JCL

 REPRO INFILE(COMSIN1) OUTFILE(COMSYS1)
 REPRO INFILE(COMSIN3) OUTFILE(COMSYS3)
 REPRO INFILE(COMSIN4) OUTFILE(COMSYS4)
/*

E. JCLINST4
//JOBNAM4 JOB.... JOB CARD INFORMATION ..
//*
//* THIS JOB ALLOCATES AND INITIALISES THE CAPTURE DATA SETS.
//*
//* THE FOLLOWING CHANGES HAVE TO BE PERFORMED BEFORE RUNNING THIS JOB
//*
//* 1. INSERT A VALID JOBCARD.
//* 2. CHANGE PREFIX TO SUIT YOUR SITE’S REQUIREMENTS
//* 3. CHANGE VVVVVV TO THE REQUIRED VOLSER(S).
//*
//ALLOC EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 DELETE PREFIX.VSAM.CAPTUR1
 DELETE PREFIX.VSAM.CAPTUR2
 DEFINE CLUSTER -
 (NAME (PREFIX.VSAM.CAPTUR1) -
 NONINDEXED -
 SHAREOPTIONS (1) -
 RECORDSIZE (0032 4096) -
 SPEED REUSE) -
 DATA -
 (NAME (PREFIX.VSAM.CAPTUR1.DATA) -
 CISZ (8192) -
 VOLUMES (VVVVVV) -
 CYLINDERS (3 0))
 DEFINE CLUSTER -
 (NAME (PREFIX.VSAM.CAPTUR2) -
 NONINDEXED -
 SHAREOPTIONS (1) -
 RECORDSIZE (0032 4096) -
 SPEED REUSE) -
 DATA -
 (NAME (PREFIX.VSAM.CAPTUR2.DATA) -
 CISZ (8192) -
 VOLUMES (VVVVVV) -
 CYLINDERS (3 0))
/*
//INIT EXEC PGM=TUSACAPT,PARM=’5000’
//STEPLIB DD DSN=PREFIX.LOAD,DISP=SHR
//CAPTUR1 DD DSN=PREFIX.VSAM.CAPTUR1,DISP=SHR
//CAPTUR2 DD DSN=PREFIX.VSAM.CAPTUR2,DISP=SHR
//*

F. JCLINST5
//JOBNAM5 JOB.... JOB CARD INFORMATION ..
//*
//* THIS JOB ALLOCATES AND INITIALISES THE SPOOL DATA SET.
//*
//* THE FOLLOWING CHANGES HAVE TO BE PERFORMED BEFORE RUNNING THIS JOB
//*
//* 1. INSERT A VALID JOBCARD.

35

z/OS Sample JCLInstallation

//* 2. CHANGE PREFIX TO SUIT YOUR SITE’S REQUIREMENTS
//* 3. CHANGE VVVVVV TO THE REQUIRED VOLSER.
//*
//*
//ALLOC EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 DELETE PREFIX.SPOOL
 DEFINE CLUSTER -
 (NAME (PREFIX.SPOOL) -
 NUMBERED -
 SHAREOPTIONS (2 3) -
 RECORDSIZE (2040 2040) -
 SPEED REUSE) -
 DATA -
 (NAME (PREFIX.SPOOL.DATA) -
 CISZ (2048) -
 VOLUMES (VVVVVV) -
 CYLINDERS (5 0))
/*
//INIT EXEC PGM=TUMSUTIL
//STEPLIB DD DSN=PREFIX.LOAD,DISP=SHR
//COMSPL DD DSN=PREFIX.SPOOL,DISP=SHR
//SYSLST DD SYSOUT=*
//SYSIN DD *
INIT RECS=1350
/*

G. JCLINST7
//JOBNAM7 JOB.... JOB CARD INFORMATION ..
//*
//* THIS JOB ALLOCATES AND INITIALISES THE Com-plete JES3 DATA SET.
//*
//* THE FOLLOWING CHANGES HAVE TO BE PERFORMED BEFORE RUNNING THIS JOB:-
//*
//* 1. INSERT A VALID JOBCARD.
//* 2. CHANGE PREFIX TO SUIT YOUR SITE’S REQUIREMENTS
//* 3. CHANGE UUUU TO THE REQUIRED UNIT.
//* 4. CHANGE BLKSIZE TO THE REQUIRED BLOCKSIZE.
//* 5. CHANGE CMDS TO THE REQUIRED NUMBER OF COMMANDS.
//* 6. CHANGE VVVVVV TO THE REQUIRED VOLSER.
//*
//* VALID VALUES OF BLKSIZE AND CMDS FOR YOUR DISKTYPE CAN BE OBTAINED
//* FROM THE FOLLOWING TABLE:-
//*
//* UNIT CMDS BLKSIZE
//* ---- ---- -------
//* 2314 39 7280
//* 3330 61 12960
//* 3340 34 8320
//* 3350 72 19040
//* 3375 76 32720
//* 3380 83 32720
//* 3390 78 32720
//*
//J3ALLOC EXEC PGM=IEFBR14
//J3UQ DD DSN=PREFIX.JES3.UQJOBS,
// DISP=(NEW,CATLG,DELETE),UNIT=UUUU,
// DCB=(RECFM=U,BLKSIZE=BLKSIZE),
// SPACE=(TRK,5,,CONTIG),

36

Installationz/OS Sample JCL

// VOL=SER=VVVVVV
//*
//J3INIT1 EXEC PGM=IEBDG
//SYSPRINT DD SYSOUT=*
//OUTPUT DD DSN=&T1,DISP=(,PASS),UNIT=UUUU,
// SPACE=(TRK,4),VOL=SER=VVVVVV,
// DCB=(RECFM=U,BLKSIZE=BLKSIZE)
//SYSIN DD *
 DSD OUTPUT=(OUTPUT)
 CREATE QUANTITY=4,FILL=X’00’
/*
//J3INIT2 EXEC PGM=IEBDG
//SYSPRINT DD SYSOUT=*
//OUTPUT DD DSN=&T2,DISP=(,PASS),UNIT=UUUU,
// SPACE=(TRK,1),VOL=SER=VVVVVV,
// DCB=(RECFM=U,BLKSIZE=80)
//SYSIN DD *
 DSD OUTPUT=(OUTPUT)
 CREATE QUANTITY=CMDS,FILL=X’00’
/*
//J3INIT3 EXEC PGM=IEBGENER
//SYSPRINT DD SYSOUT=*
//SYSIN DD DUMMY
//SYSUT1 DD DSN=&T1,DISP=(OLD,DELETE)
// DD DSN=&T2,DISP=(OLD,DELETE)
//SYSUT2 DD DSN=PREFIX.JES3.UQJOBS,DISP=SHR

H. JCLINST8
//JOBNAM8 JOB.... JOB CARD INFORMATION ..
//*
//* THIS JOB ASSEMBLES AND LINKS THE JES3 INTERFACE MODULES.
//*
//* THE FOLLOWING CHANGES HAVE TO BE PERFORMED BEFORE RUNNING THIS JOB:-
//*
//* 1. INSERT A VALID JOBCARD.
//* 2. CHANGE PREFIX TO SUIT YOUR SITE’S REQUIREMENTS
//* 3. WHEN ASSEMBLING ON SYSTEMS WHERE THE ’HL’ ASSEMBLER IS
//* NOT AVAILABLE, CHANGE THE PROCEDURE VARIABLE ’ASMBLR’ FROM
//* ’ASMA90’ TO ’IEV90’.
//*
//ASMJ3 PROC MAC1=’PREFIX.SOURCE’,
// MAC2=’SYS1.JES3MAC’,
// MAC3=’SYS1.MACLIB’,
// MAC4=’SYS1.AMODGEN’,
// N=TEMPNAME,XREF=’XREF(SHORT)’,
// ASMBLR=ASMA90,LINECNT=55,
// SLIB=’PREFIX.SOURCE’,
// LLIB=’PREFIX.USER.LOAD’,
// CLIB=’PREFIX.LOAD’,
// UNIT=’SYSDA’,
// CC=9,NCAL=NCAL,LSIZE=’(120K,30K)’
//*
//ASM EXEC PGM=&ASMBLR,REGION=1024K,
// PARM=’LOAD,NODECK,TERM,&XREF,LINECOUNT(&LINECNT)’
//SYSLIB DD DSN=&MAC1,DISP=SHR,DCB=BLKSIZE=32000
// DD DSN=&MAC2,DISP=SHR
// DD DSN=&MAC3,DISP=SHR
// DD DSN=&MAC4,DISP=SHR
//SYSUT1 DD SPACE=(CYL,(5,2)),UNIT=&UNIT,DISP=(NEW,PASS)

37

z/OS Sample JCLInstallation

//SYSGO DD DUMMY
//SYSLIN DD UNIT=&UNIT,SPACE=(TRK,(30,20),RLSE),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=400),DISP=(NEW,PASS)
//SYSPRINT DD SYSOUT=*
//SYSTERM DD SYSOUT=*
//SYSIN DD DSN=&SLIB.(&N),DISP=SHR
//*
//LKED EXEC PGM=IEWL,COND=(&CC,LT,ASM),
// PARM=’XREF,LIST,LET,&NCAL,SIZE=&LSIZE’
//SYSLIN DD DSN=*.ASM.SYSLIN,DISP=(OLD,DELETE)
// DD DDNAME=SYSIN
//SYSLIB DD DSN=&CLIB,DISP=SHR
//SYSLMOD DD DSN=&LLIB.(&N),DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD SPACE=(CYL,(5,2)),DSN=*.ASM.SYSUT1,DISP=(OLD,DELETE)
// PEND
//*
//ASML1 EXEC ASMJ3,N=IATUQJ3,LLIB=’JES3.LOADLIB’
//ASML2 EXEC ASMJ3,N=JES3SERV
//*
//

I. JCLINST9
//JOBNAM1 JOB.... JOB CARD INFORMATION ..
//*
//* THIS JOB LINKS THE TLINF4 MODULE FROM THE DISTRIBUTED
//* LOAD LIBRARY INTO AN APF AUTHORISED LIBRARY.
//*
//* THE FOLLOWING CHANGES HAVE TO BE PERFORMED BEFORE RUNNING THIS JOB:-
//*
//* 1. INSERT A VALID JOBCARD.
//* 2. CHANGE PREFIX TO SUIT YOUR SITE’S REQUIREMENTS
//* 3. CHANGE THE OUT DSN TO THE REQUIRED LIBRARY.
//*
//LINK EXEC PGM=IEWL,PARM=’LIST,XREF,AC=1’
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(3,1))
//LINKLIB DD DISP=SHR,DSN=PREFIX.LOAD
//SYSLMOD DD DISP=SHR,DSN=ANY.APF.AUTHORISED.LIBRARY
//SYSLIN DD *
 INCLUDE LINKLIB(TLINF4)
 MODE AMODE(31),RMODE(24)
 NAME TLINF4(R)
/*

J. JCLINSTB
//JOBNAMB JOB.... JOB CARD INFORMATION ..
//*
//* THIS JOB ASSEMBLES THE Com-plete JES2 SERVER MODULE.
//*
//* THE FOLLOWING CHANGES HAVE TO BE PERFORMED BEFORE RUNNING THIS JOB:-
//*
//* 1. INSERT A VALID JOBCARD.
//* 2. CHECK THAT THE VARIOUS DATASET NAMES ARE CORRECT
//* 3. WHEN ASSEMBLING ON SYSTEMS WHERE THE ’HL’ ASSEMBLER IS
//* NOT AVAILABLE, CHANGE THE PROCEDURE VARIABLE ’ASMBLR’ FROM
//* ’ASMA90’ TO ’IEV90’.
//* 4. FOR z/OS SYSTEMS BEFORE OS/390, CHANGE ’SHASMAC’ TO ’HASPSRC’

38

Installationz/OS Sample JCL

//* 5. ENSURE THAT THE CMOSTYPE MACRO HAS BEEN UPDATED TO REFLECT THE
//* OPERATING SYSTEM FOR WHICH YOU ARE ASSEMBLING AS PER THE
//* INSTALLATION documentation.
//*
//ASMJ2 PROC MAC1=’SYS1.SMPSTS’,
// MAC2=’SYS1.SMPMTS’,
// MAC3=’SYS1.SHASMAC’, <-- OS/390
// MAC4=’COM.SOURCE’,
// MAC4=’COM.SOURCE’,
// MAC5=’SYS1.MACLIB’,
// MAC6=’SYS1.AMODGEN’,
// N=TEMPNAME,XREF=’XREF(SHORT)’,
// ASMBLR=ASMA90,LINECNT=55, <-- OS/390
// SLIB=’COM.SOURCE’,
// LLIB=’COM.USER.LOAD’,
// UNIT=’SYSDA’,
// CC=9,NCAL=NCAL,LSIZE=’(228K,48K)’
//*
//ASM EXEC PGM=&ASMBLR,REGION=1024K,
// PARM=’LOAD,NODECK,TERM,&XREF,LINECOUNT(&LINECNT)’
//SYSLIB DD DSN=&MAC1,DISP=SHR,DCB=BLKSIZE=32000
// DD DSN=&MAC2,DISP=SHR
// DD DSN=&MAC3,DISP=SHR
// DD DSN=&MAC4,DISP=SHR
// DD DSN=&MAC5,DISP=SHR
// DD DSN=&MAC6,DISP=SHR
//SYSUT1 DD SPACE=(CYL,(5,2)),UNIT=&UNIT,DISP=(NEW,PASS)
//SYSUT2 DD SPACE=(CYL,(5,2)),UNIT=&UNIT,DISP=(NEW,PASS)
//SYSUT3 DD SPACE=(CYL,(5,2)),UNIT=&UNIT,DISP=(NEW,PASS)
//SYSGO DD DUMMY
//SYSLIN DD UNIT=&UNIT,SPACE=(TRK,(30,20),RLSE),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=400),DISP=(NEW,PASS)
//SYSPRINT DD SYSOUT=*
//SYSTERM DD SYSOUT=*
//SYSIN DD DSN=&SLIB.(&N),DISP=SHR
//*
//LKED EXEC PGM=IEWL,COND=(&CC,LT,ASM),
// PARM=’AMODE=31,RMODE=ANY,XREF,LIST,LET,REUS,&NCAL,SIZE=&LSIZE’
//SYSLIN DD DSN=*.ASM.SYSLIN,DISP=(OLD,DELETE)
// DD DDNAME=SYSIN

//SYSLIB DD DSN=&LLIB,DISP=SHR
//SYSLMOD DD DSN=&LLIB.(&N),DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD SPACE=(CYL,(5,2)),DSN=*.ASM.SYSUT1,DISP=(OLD,DELETE)
// PEND
//*
//ASML1 EXEC ASMJ2,N=JES2SERV
//*

K. JCLINSTC
//JOBNAMC JOB.... JOB CARD INFORMATION ..
//*
//* THIS JOB ASSEMBLES THE Com-plete z/OS ACTIVE DISPLAY FORMAT MODULE
//*
//* THE FOLLOWING CHANGES HAVE TO BE PERFORMED BEFORE RUNNING THIS JOB:-
//*
//* 1. INSERT A VALID JOBCARD.
//* 2. CHECK THAT THE VARIOUS DATASET NAMES ARE CORRECT

39

z/OS Sample JCLInstallation

//* 3. WHEN ASSEMBLING ON SYSTEMS WHERE THE ’HL’ ASSEMBLER IS
//* NOT AVAILABLE, CHANGE THE PROCEDURE VARIABLE ’ASMBLR’ FROM
//* ’ASMA90’ TO ’IEV90’.
//* 4. ENSURE THAT THE CMOSTYPE MACRO HAS BEEN UPDATED TO REFLECT THE
//* OPERATING SYSTEM FOR WHICH YOU ARE ASSEMBLING AS PER THE
//* INSTALLATION documentation.
//*
//ASMLKED PROC MAC1=’SYS1.SMPSTS’,
// MAC2=’SYS1.SMPMTS’,
// MAC3=’COM.SOURCE’,
// MAC4=’SYS1.MACLIB’,
// N=TEMPNAME,XREF=’XREF(SHORT)’,
// ASMBLR=ASMA90,LINECNT=55,
// SLIB=’COM.SOURCE’,
// LLIB=’COM.USER.LOAD’,
// UNIT=’SYSDA’,
// CC=9,NCAL=NCAL,LSIZE=’(228K,48K)’
//*
//ASM EXEC PGM=&ASMBLR,REGION=1024K,
// PARM=’LOAD,NODECK,TERM,&XREF,LINECOUNT(&LINECNT)’
//SYSLIB DD DSN=&MAC1,DISP=SHR,DCB=BLKSIZE=32000
// DD DSN=&MAC2,DISP=SHR
// DD DSN=&MAC3,DISP=SHR
// DD DSN=&MAC4,DISP=SHR
// DD DSN=&MAC5,DISP=SHR
//SYSUT1 DD SPACE=(CYL,(5,2)),UNIT=&UNIT,DISP=(NEW,PASS)
//SYSUT2 DD SPACE=(CYL,(5,2)),UNIT=&UNIT,DISP=(NEW,PASS)
//SYSUT3 DD SPACE=(CYL,(5,2)),UNIT=&UNIT,DISP=(NEW,PASS)
//SYSGO DD DUMMY
//SYSLIN DD UNIT=&UNIT,SPACE=(TRK,(30,20),RLSE),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=400),DISP=(NEW,PASS)
//SYSPRINT DD SYSOUT=*
//SYSTERM DD SYSOUT=*
//SYSIN DD DSN=&SLIB.(&N),DISP=SHR
//*
//LKED EXEC PGM=IEWL,COND=(&CC,LT,ASM),
// PARM=’AMODE=31,RMODE=ANY,XREF,LIST,LET,&NCAL,SIZE=&LSIZE,REUS’
//SYSLIN DD DSN=*.ASM.SYSLIN,DISP=(OLD,DELETE)
// DD DDNAME=SYSIN
//SYSLIB DD DSN=&LLIB,DISP=SHR
//SYSLMOD DD DSN=&LLIB.(&N),DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD SPACE=(CYL,(5,2)),DSN=*.ASM.SYSUT1,DISP=(OLD,DELETE)
// PEND
//*
//ASML1 EXEC ASMLKED,N=TTJIMVS
//*

L. JCLINSTE
//JOBNAME JOB.... JOB CARD INFORMATION ..
//*
//* THIS JOB ALLOCATES AND INITIALISES THE SD DATA SET.
//*
//* THE FOLLOWING CHANGES HAVE TO BE PERFORMED BEFORE RUNNING THIS JOB:-
//*
//* 1. INSERT A VALID JOBCARD.
//* 2. CHANGE PREFIX TO SUIT YOUR SITE’S REQUIREMENTS
//* 3. CHANGE VVVVVV TO THE REQUIRED VOLSER.
//* 4. CHECK THE IDCAMS PARAMETERS CISZ, RECORDSIZE, CYLINDERS.
//* 5. IF DESIRED, ENTER VALUES FOR RECORDS, SDFILES, DMPSPAC.

40

Installationz/OS Sample JCL

//*
//ALLOC EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 DELETE PREFIX.VSAM.SD
 DEFINE CLUSTER -
 (NAME (PREFIX.VSAM.SD) -
 NUMBERED -
 SHAREOPTIONS (2) -
 SPEED REUSE) -
 DATA -
 (NAME (PREFIX.VSAM.SD.DATA) -
 CISZ (4096) -
 RECORDSIZE (4080 4080) -
 VOLUMES (VVVVVV) -
 CYLINDERS (70))
/*
//INIT EXEC PGM=TUSDUTIL,REGION=1024K,
// PARM=’INIT,RECORDS=,SDFILES=,DMPSPAC=’
//*
//* RECORDS= NUMBER OF VSAM RECORDS TO BE INITIALIZED.
//* DEFAULT: MAX THAT FITS INTO EXTENTS CURRENTLY ALLOCATED
//*
//* SDFILES= DIRECTORY SIZE (MAX NUMBER OF SDFILES). DEFAULT: 500
//*
//* DMPSPAC= SPACE IN MBYTES THAT SHALL BE ASSIGNED FOR THREAD DUMPS.
//* DEFAULT: 50% OF RECORDS. MAX: 32 MBYTE (IN ANY CASE).
//* REST WILL BE USED FOR SDFILES.
//*
//STEPLIB DD DSN=PREFIX.LOAD,DISP=SHR
//COMSD DD DSN=PREFIX.VSAM.SD,DISP=OLD
//SYSPRINT DD SYSOUT=*

41

z/OS Sample JCLInstallation

VSE Sample JCL
This chapter contains sample JCL of the jobs referred to in the installation procedure.

A. JCLINST1

B. JCLINST2

C. JCLINST4

D. JCLINST5

E. JCLINST6

F. JCLINST7

G. JCLINST8

H. JCLINST9

A. JCLINST1
* $$ JOB JNM=JCLINST1, JECL CARD INFORMATION
* $$ LST DISP=D,CLASS=A
// JOB JCLINST1 JOB CARD INFORMATION
/*
/* THIS IS THE INSTALLATION JOB1.
/*
/* THIS JOB DOWNLOADS THE DATASETS, AS SUPPLIED ON THE
/* INSTALLATION TAPE, TO DISK FOR USE DURING THE
/* INSTALLATION PROCEDURE.
/*
/* THE FOLLOWING CHANGES HAVE TO BE PERFORMED BEFORE RUNNING THIS JOB
/*
/* 1. INSERT A VALID JECL AND JOB CARD.
/* 2. CHANGE vrs TO THE VERSION, RELEASE AND SM LEVEL.
/* 3. CHANGE vvvvvv TO THE REQUIRED VOLSER.
/* 4. CHANGE ttttt TO THE REQUIRED TRACK.
/* 5. CHANGE nnnn TO THE REQUIRED NUMBER OF TRACKS.
/* 6. CHANGE cuu TO THE REQUIRED TAPE/CASS UNIT.
/* 7. CHANGE xx TO THE REQUIRED FILE NUMBER.
/*
/*
// PAUSE WAIT FOR TAPE UNIT
// ASSGN SYS006,CUU
// DLBL SAGLIB,’.......LIBRARY’
// EXTENT ,VVVVVV,1,0,TTTTTT,NNNN
/*
/* ===
* RESTORE SAGLIB.COMvrs DISTRIBUTION COM-PLETE LIBRARY
* SOURCE, OBJ and PHASE
/* ===
/*
// MTC REW,SYS006
// MTC FSF,SYS006,xx

42

InstallationVSE Sample JCL

// EXEC LIBR
 RESTOR SUB=SAGLIB.COMvrs : SAGLIB.COMvrs -
 R=Y TAPE=SYS006
/*

Notes:

1. The cuu here must be set to an installation unit name relating to the tape device to be used to load the
tape.

2. vrs in relates to the Version, Release and SM Level of the COM‐PLETE being installed, for
example, the tape volser for COM‐PLETE 5.1.0 would be called COM510.

3. The volser vvvvvv should be changed to the volume serial number on which you wish the data set to
be downloaded.

4. The track tttttt must be changed to the track for the specified volume.
5. The number nnnn must be changed to the number of tracks for the specified data set.
6. For the value of xx, rewind the tape and use the relevant number from the Report of Tape Creation.

B. JCLINST2
* $$ JOB JNM=JCLINST2, JECL CARD INFORMATION
* $$ LST DISP=D,CLASS=A
// JOB JCLINST2 JOB CARD INFORMATION
/*
/* THIS IS THE Com-plete INSTALLATION JOB2
/*
/* THIS JOB CREATES THE Com-plete USER DATA LIBRARY
/* THE FOLLOWING CHANGES HAVE TO BE PERFORMED BEFORE RUNNING THIS
/* JOB.
/*
/* 1. INSERT A VALID JECL AND JOB CARD
/* 2. CHANGE THE OUT DSN TO THE REQUIRED LIBRARY.
/*
/* ===
* CREATE SUBLIB SAGLIB.COMUSER
/* ===
/*
// EXEC LIBR
 DEFINE SUB=SAGLIB.COMUSER -
 REPLACE=YES
/*
/&
* $$ EOJ

C. JCLINST4
* $$ JOB JNM=JCLINST4, JECL CARD INFORMATION
* $$ LST DISP=D,CLASS=A
// JOB JCLINST4 JOB CARD INFORMATION
/*
/* THIS IS Com-plete INSTALLATION JOB4
/*
/* THIS JOB ALLOCATES AND INITIALISES THE Com-plete SYSTEM DATASETS.
/*
/* THE FOLLOWING CHANGES HAVE TO BE PERFORMED BEFORE RUNNING THIS
/* JOB:#
/*
/*

43

VSE Sample JCLInstallation

/* 1. INSERT A VALID JECL AND JOB CARD.
/* 2. CHANGE VVVVVV TO THE REQUIRED VOLSER.
/* 3. CHANGE vrs TO THE Com-plete VERSION, RELEASE AND SM LEVEL.
/* 4. CHANGE CCCC TO THE REQUIRED NUMBER OF CYLINDERS.
/* 5. CHANGE ????? TO THE REQUIRED CATALOG FILE NAME.
/*
/* ===
* CREATE Com-plete COMSYS.BASE DATA SET (VSAM)
* CREATE Com-plete COMSYS.USERS DATA SET (VSAM)
* CREATE Com-plete COMSYS.CATALOG DATA SET (VSAM)
/* ===
// EXEC IDCAMS
 /* DELETE (COM.COMSYS.BASE) CLUSTER - */
 /* CATALOG (????????) */
 /* DELETE (COM.COMSYS.USERS) CLUSTER - */
 /* CATALOG (????????) */
 /* DELETE (COM.COMSYS.CATALOG) CLUSTER - */
 /* CATALOG (????????) */
 /* */
 /* COMSYS.BASE */
 /* */
 DEFINE CLUSTER -
 (NAME (COM.COMSYS.BASE) -
 INDEXED -
 SHAREOPTIONS (2 3) -
 RECORDSIZE (4089 4089) -
 KEYS (16 0) -
 SPEED REUSE) -
 DATA -
 (NAME (COM.COMSYS.BASE.DATA) -
 CISZ (4096) -
 VOLUMES (VVVVVV) -
 CYLINDERS (0001 01)) -
 INDEX -
 (NAME (COM.COMSYS.BASE.INDEX) -
 CISZ (2048) -
 VOLUMES (VVVVVV) -
 TRACKS (001 01)) -
 CATALOG (????????)

IF LASTCC = 0 -
 THEN
 LISTCAT ENT (COM.COMSYS.BASE) ALL -
 CATALOG (????????)
 /* */
 /* COMSYS.USERS */
 /* */
 DEFINE CLUSTER -
 (NAME (COM.COMSYS.USERS) -
 INDEXED -
 SHAREOPTIONS (2 3) -
 RECORDSIZE (2041 2041) -
 KEYS (16 0) -
 SPEED REUSE) -
 DATA -
 (NAME (COM.COMSYS.USERS.DATA) -
 CISZ (4096) -
 VOLUMES (VVVVVV) -
 CYLINDERS (0003 03)) -
 INDEX -
 (NAME (COM.COMSYS.USERS.INDEX) -

44

InstallationVSE Sample JCL

 CISZ (2048) -
 VOLUMES (VVVVVV) -
 TRACKS (002 01)) -
 CATALOG (????????)
 IF LASTCC = 0 -
 THEN
 LISTCAT ENT (COM.COMSYS.USERS) ALL -
 CATALOG (????????)
 /* */
 /* COMSYS.CATALOG */
 /* */

 DEFINE CLUSTER -
 (NAME (COM.COMSYS.CATALOG) -
 INDEXED -
 SHAREOPTIONS (2 3) -
 RECORDSIZE (313 313) -
 KEYS (16 0) -
 SPEED REUSE) -
 DATA -
 (NAME (COM.COMSYS.CATALOG.DATA) -
 CISZ (4096) -
 VOLUMES (VVVVVV) -
 TRACKS (0005 02)) -
 INDEX-
 (NAME (COM.COMSYS.CATALOG.INDEX) -
 CISZ (2048) -
 VOLUMES (VVVVVV) -
 TRACKS (001 01)) -
 CATALOG (????????)
 IF LASTCC = 0 -
 THEN
 LISTCAT ENT (COM.COMSYS.CATALOG) ALL -
 CATALOG (????????)
/*
/*
// IF $RC > 0 THEN /* DEFINE CLUSTER SUCCESSFULL ??? */
// GOTO $EOJ /* NO - GO TO END OF JOB */
/*
/*
/* ===
* LOAD COMSYS.BASE VSAM DATA SET
/* ===
// PAUSE WAITING FOR TAPE UNIT
// ASSGN SYS004,??? <------ CUU FOR TAPE UNIT
// MTC REW,SYS004
// TLBL INBAS,’COMSYS.BASE’,,,,2
// TLBL INUSE,’COMSYS.USERS’,,,,3
// TLBL INCAT,’COMSYS.CATALOG’,,,,4
/*
// DLBL OUTBAS,’COM.COMSYS.BASE’,,VSAM,CAT=COMCAT
// DLBL OUTUSE,’COM.COMSYS.USERS’,,VSAM,CAT=COMCAT
// DLBL OUTCAT,’COM.COMSYS.CATALOG’,,VSAM,CAT=COMCAT
/*
// DLBL COMCAT,’?????????’,,VSAM <----- VSAM CATALOG NAME
/*
// EXEC IDCAMS
 /* === */
 /* LOAD COMSYS.BASE */
 /* === */
 REPRO INFILE (INBAS -
 ENVIRONMENT -

45

VSE Sample JCLInstallation

 (PDEV (2400) - /* TAPE INPUT */
 RECFM (VARBLK) -
 BLKSZ (16384) -
 REWIND)) -
 OUTFILE (OUTBAS) REPLACE REUSE

 /* == */
 /* LOAD COMSYS.USERS */
 /* == */
 REPRO INFILE (INUSE -
 ENVIRONMENT -
 (PDEV (2400) - /* TAPE INPUT */
 RECFM (VARBLK) -
 BLKSZ (16384) -
 REWIND)) -
 OUTFILE (OUTUSE) REPLACE REUSE
 /* == */
 /* LOAD COMSYS.CATALOG */
 /* == */
 REPRO INFILE (INCAT -
 ENVIRONMENT -
 (PDEV (2400) - /* TAPE INPUT */
 RECFM (VARBLK) -
 BLKSZ (16384) -
 REWIND)) -
 OUTFILE (OUTCAT) REPLACE REUSE
/*
/&
* $$ EOJ

D. JCLINST5
* $$ JOB JNM=JCLINST5, JECL CARD INFORMATION
* $$ LST DISP=D,CLASS=A
// JOB JCLINST5 JOB CARD INFORMATION
/*
/* THIS IS THE Com-plete INSTALLATION JOB5.
/*
/* THIS JOB ALLOCATES AND INITIALISES THE Com-plete CAPTURE DATA SETS
/*
/* THE FOLLOWING CHANGES HAVE TO BE PERFORMED BEFORE RUNNING THIS JOB
/*
/* 1. INSERT A VALID JOBCARD.
/* 2. CHANGE VVVVVV TO THE REQUIRED VOLSER(S).
/* 3. CHANGE ????? TO THE REQUIRED CATALOG FILE NAME.
/*
// EXEC IDCAMS
 /* DELETE (COM.VSAM.CAPTUR1) cluster - */
 /* CATALOG (????????) */
 /* DELETE (COM.VSAM.CAPTUR2) cluster - */
 /* CATALOG (????????) */
 DEFINE CLUSTER -
 (NAME (COM.VSAM.CAPTUR1) -
 NONINDEXED -
 SHAREOPTIONS (1) -
 RECORDSIZE (0032 4096) -
 SPEED REUSE) -
 DATA -
 (NAME (COM.VSAM.CAPTUR1.DATA) -
 CISZ (8192) -
 VOLUMES (VVVVVV) -

46

InstallationVSE Sample JCL

 CYLINDERS (3 0)) -
 CATALOG (????????)
 DEFINE CLUSTER -
 (NAME (COM.VSAM.CAPTUR2) -
 NONINDEXED -
 SHAREOPTIONS (1) -
 RECORDSIZE (0032 4096) -
 SPEED REUSE) -
 DATA -
 (NAME (COM.VSAM.CAPTUR2.DATA) -
 CISZ (8192) -
 VOLUMES (VVVVVV) -
 CYLINDERS (3 0)) -
 CATALOG (????????)
/*
* INIT CAPTURE FILES
/*
// DLBL COMCAT,’????????’,,VSAM <---- VSAM CATALOG NAME
/*
// DLBL CAPTUR1,’COM.VSAM.CAPTUR1’,,VSAM,CAT=COMCAT
// DLBL CAPTUR2,’COM.VSAM.CAPTUR2’,,VSAM,CAT=COMCAT
// LIBDEF PHASE,SEARCH=SAGLIB.COMvrs,TEMP
// EXEC TUSACAPT,SIZE=220K
/*
/&
* $$ EOJ

E. JCLINST6
* $$ JOB JNM=JCLINST6, JECL CARD INFORMATION
* $$ LST DISP=D,CLASS=A
// JOB JCLINST6 JOB CARD INFORMATION
/*
/* THIS IS THE Com-plete INSTALLATION JOB6.
/*
/* THIS JOB ALLOCATES AND INITIALISES THE Com-plete SD-FILE DATA SET
/*
/* THE FOLLOWING CHANGES HAVE TO BE PERFORMED BEFORE RUNNING THIS JOB
/*
/* 1. INSERT A VALID JOBCARD.
/* 2. CHANGE VVVVVV TO THE REQUIRED VOLSER.
/* 3. CHANGE ????? TO THE REQUIRED CATALOG FILE NAME.
/*
/*
/*
/* ===
* DEFINE Com-plete COM.VSAM.SDFILE DATA SET
/* ===
// EXEC IDCAMS
 /* DELETE (COM.VSAM.SDFILE) CLUSTER - */
 /* CATALOG (????????) */
 DEFINE CLUSTER -
 (NAME (COM.VSAM.SDFILE) -
 NUMBERED -
 SHAREOPTIONS (2 3) -
 RECORDSIZE (4080 4080) -
 SPEED REUSE) -
 DATA -
 (NAME (COM.VSAM.SDFILE.DATA) -
 CISZ (4096) -
 VOLUMES (VVVVVV) -

47

VSE Sample JCLInstallation

 CYLINDERS (0020 00)) -
 CATALOG (????????)
/*
/* ===
* INIT Com-plete COM.VSAM.SDFILE
/* ===
// LIBDEF PHASE,SEARCH=SAGLIB.COMvrs,TEMP
// ASSGN SYS003,SYSLST
/*
// DLBL COMCAT,’????????’,,VSAM <---- VSAM CATALOG NAME
/*
// DLBL COMSD,’COM.VSAM.SDFILE’,,VSAM,CAT=COMCAT
// EXEC TUSDUTIL,SIZE=220K,PARM=’INIT,SDFILES=0200,DMPSPAC=8’
/*
/* ===
* DISPLAY Com-plete COM.VSAM.SDFILE
/* ===
// EXEC IDCAMS
 LISTCAT ENT (COM.VSAM.SDFILE) ALL -
 CATALOG (????????)
/*
/&
* $$ EOJ

F. JCLINST7
* $$ JOB JNM=JCLINST7, JECL CARD INFORMATION
* $$ LST DISP=D,CLASS=A
// JOB JCLINST7 JOB CARD INFORMATION
/*
/* THIS IS THE Com-plete INSTALLATION JOB7.
/*
/* THIS JOB ALLOCATES AND INITIALISES THE Com-plete
/* PRINTOUT-SPOOL DATA SET
/*
/* THE FOLLOWING CHANGES HAVE TO BE PERFORMED BEFORE RUNNING THIS JOB
/*
/* 1. INSERT A VALID JOBCARD.
/* 2. CHANGE VVVVVV TO THE REQUIRED VOLSER.
/* 3. CHANGE ????? TO THE REQUIRED CATALOG FILE NAME.
/*
/*
/* ===
* DEFINE Com-plete COM.VSAM.SPOOL DATA SET
/* ===
// EXEC IDCAMS
 /* DELETE (COM.VSAM.SPOOL) CLUSTER - */
 /* CATALOG (????????) */
 DEFINE CLUSTER -
 (NAME (COM.VSAM.SPOOL) -
 NUMBERED -
 SHAREOPTIONS (2 3) -
 RECORDSIZE (4080 4080) -
 SPEED REUSE) -
 DATA -
 (NAME (COM.VSAM.SPOOL.DATA) -
 CISZ (4096) -
 VOLUMES (VVVVVV) -
 CYLINDERS (0010 00)) -
 CATALOG (????????)
/*

48

InstallationVSE Sample JCL

/* ===
* INIT Com-plete COM.VSAM.SPOOL
/* ===
// LIBDEF PHASE,SEARCH=SAGLIB.COMvrs,TEMP
// ASSGN SYS003,SYSLST
/*
// DLBL COMCAT,’????????’,,VSAM <---- VSAM CATALOG NAME
/*
/* RECS= NUMCYL * NUMTRC * NUMREC
/* ==============================
/* WHERE:
/* NUMCYL = NUMBER OF CYLINDER
/* NUMTRC = NUMBER OF TRACKS PER CYLINDER
/* NUMREC = NUMBER CONTROLINTERVAL PER TRACK
/*
/*
// DLBL COMSPL,’COM.VSAM.MSGLIB’,,VSAM,CAT=COMCAT
// EXEC TUMSUTIL,SIZE=220K
INIT RECS=1500
/*

/* ===
* DISPLAY Com-plete COM.VSAM.SPOOL
/* ===
// EXEC IDCAMS
 LISTCAT ENT (COM.VSAM.SPOOL) ALL -
 CATALOG (????????)
/*
/&
* $$ EOJ

G. JCLINST8
* $$ JOB JNM=JCLINST8, JECL CARD INFORMATION
* $$ LST DISP=D,CLASS=A
// JOB JCLINST8 JOB CARD INFORMATION
/*
/* THIS IS THE COM-PLETE INSTALLATION JOB8.
/*
/* THIS JOB ALLOCATES AND INITIALISES THE COM-PLETE DUMP DATA SET
/*
/* THE FOLLOWING CHANGES HAVE TO BE PERFORMED BEFORE RUNNING THIS JOB
/*
/* 1. INSERT A VALID JECL AND JOB CARD.
/* 2. CHANGE VVVVVV TO THE REQUIRED VOLSER.
/* 3. CHANGE ?????? TO THE REQUIRED CATALOG FILE NAME.
/*
/*
/* ===
* DEFINE COM-PLETE COM.VSAM.DUMPFILE
/* ===
// EXEC IDCAMS
 /* DELETE (COM.VSAM.DUMPFILE) CLUSTER - */
/* CATALOG (??????) */
 DEFINE CLUSTER -
 (NAME (COM.VSAM.DUMPFILE) -
 NUMBERED -
 SHAREOPTIONS (2 3) -
 RECORDSIZE (4080 4080) -
 SPEED REUSE) -

49

VSE Sample JCLInstallation

 DATA -
 (NAME (COM.VSAM.DUMPFILE.DATA) -
 CISZ (4096) -
 VOLUMES (VVVVVV) -
 CYLINDERS (0120 00)) -
 CATALOG (??????)
 /* ======================================= */
 /* DISPLAY COM-PLETE COM.VSAM.DUMPFILE */
 /* ======================================= */
 LISTCAT ENT (COM.VSAM.DUMPFILE) ALL -
 CATALOG (??????)
/*

H. JCLINST9
* $$ JOB JNM=JCLINST9, JECL CARD INFORMATION
* $$ LST DISP=D,CLASS=A
// JOB JCLINST9 JOB CARD INFORMATION
/*
/* THIS IS THE Com-plete INSTALLATION JOB9
/*
/* DEFINE THE VTAM APPLICATION FOR Com-plete
/*
/* THE FOLLOWING CHANGES HAVE TO BE PERFORMED BEFORE RUNNING THIS JOB
/*
/* 1. INSERT A VALID JOBCARD.
/* 2. CHANGE THE VTAM APPLICATION ID TO THE REQUIRED NAME.
/*
/*
/* ===
* DEFINE THE VTAM APPLICATION FOR Com-plete
/* ===
// EXEC LIBR,PARM=’MSHP’
 ACC SUB=PRD2.CONFIG
 CATALOG APPLCOM.B R=Y
APPLCOM VBUILD TYPE=APPL
COMPLETE APPL AUTH=(ACQ,PASS),APPC=YES
/+
/*
/&
* $$ EOJ

50

InstallationVSE Sample JCL

Installation and Customization of TPF
This documentation describes installation and customization of the TPF component in the supported
environments CICS, TSO and Com-plete.

This information is organized under the following headings:

Installing TPF in the Host Environment

General Logon Authorization

The ACSTAB Table

CICS: Special Considerations

Transparency (CICS and TSO) and Reverse Access (CICS)

Exits for the TPF Component

Starting Access from a User Program

51

Installation and Customization of TPFInstallation

Installing TPF in the Host Environment
The TPF component uses the Adabas SVC to communicate and pass data between the host and target
systems. This component and the appropriate Adabas linkage routine must therefore be installed prior to
the installation of TPF. Please consult the appropriate Adabas documentation.

This document covers the following topics:

TPF Facilities Overview

Installation under CICS

Installation under TSO (z/OS only)

Installation under Com-plete

What Next?

TPF Facilities Overview
TPF provides a number of facilities to allow you to customize the product to your site’s requirements.
This section gives a brief outline of them.

The ACSTAB table:
Site-specific items on the host side of an TPF installation can be specified in the ACSTAB table.
These include, for example, the Adabas SVC number, DBID and the linkage routine to be used.

The Direct Call feature:
This feature enables the user to define transactions that are automatically routed to the TPF target
system, where a specific program or transaction is started. The Direct Call feature is described in
detail in the section TPFXTAB Subtable in The ACSTAB Table.

Printing from TPF:
CICS sites can define a local printer in the TPF target system’s TIBTAB. Printouts from the target
system are printed on the corresponding CICS local printer.

The Transparency feature:
Transparency is a feature of TPF which simplifies the conversation between a Natural CICS/TSO
environment and an environment in which Natural runs under TPF. The transparency feature allows
Natural programs which formerly ran under CICS or TSO to run under TPF with no changes. More
details on transparency are given in TPF Transparency under CICS and TSO.

Reverse Access programming:
Many Natural programs currently under CICS call 3GL subroutines to perform certain functions. If
these subroutines do not directly use any CICS facilities, then they can simply be installed to run in
the TPF address space/partition. However, if a 3GL subroutine uses CICS for any reason, (for
example, EXEC CICS statements), then it must run in the CICS address space/partition. Reverse
Access provides this capability as a feature of TPF transparency, and is described in TPF
Transparency under CICS and TSO.

52

InstallationInstalling TPF in the Host Environment

Installation under CICS
To install the TPF component under CICS, proceed as follows:

Step 1: Unload the Installation Data Set

Unload the COMvrs.SCRT and COMvrs.LOA3 data sets from the installation tape. Please consult
the report from the tape creation system to determine the order of the files on the installation tape.
The COMvrs.LOA3 library contains the TPF load modules required for CICS.

On VSE systems, note that the required library is the TPFvrs sublibrary unloaded in the installation
procedure using the sample JCS JCLINST1.

Step 2: Modify the ACSTAB Table

The ACSTAB Table contains a full description of the ACSTAB table, An example ACSTAB is
provided in the source library called ACSTAB, use this and modify it to suit your installation
requirements. The table is subdivided in four parts. Each part can be modified to suit your own
installation requirements.

1. ACSDEF describes the ACCESS Default Table which is used to define data used by the host
node. This subtable must be unique for each host region.

2. ACSTBL describes the ACCESS Node Table which lists the various target systems available for
communication with the host system and also the host system with an entry for every CICS host
node.

3. ACSSCHC describes the ACCESS screen-to-hardcopy table which defines the hardcopy device
printer where printout will be routed for every terminal in the system.

Note:
If you do not require the screen-to-hardcopy function, then you need not specify this subtable.

4. TPFXTAB describes the Transparency table which describes the various transactions you can
use to enter your TPF environment and the way you give user ID, password and data to your
TPF.

Step 3: Assemble and Link the ACSTAB Table

After modification, assemble and link the ACSTAB table using the sample job from the source
library (JCLASMTB).

Step 4: Link the CICS Modules

Using the sample link job in the source library (JCLLNKCI), link the TPF modules to a load library
which is concatenated in the CICS start-up procedure. You are recommended not to use the load
library you loaded from the tape.

53

Installing TPF in the Host EnvironmentInstallation

Step 5: Define the CICS Environment

1. Include the TPF modules in the program tables or define them with the CICS CEDA online
transaction.

The following entries must be defined in the PPT or with CEDA.

DFHPPT TYPE=ENTRY,PROGRAM=ACCESS46,RES=YES
DFHPPT TYPE=ENTRY,PROGRAM=ACSBEG46
DFHPPT TYPE=ENTRY,PROGRAM=ACSSPL46
DFHPPT TYPE=ENTRY,PROGRAM=ACSTAB46
DFHPPT TYPE=ENTRY,PROGRAM=TPFXF46
DFHPPT TYPE=ENTRY,PROGRAM=ACSUCTR)see note d

The following entries must be defined in the PCT or with CEDA.

DFHPCT TYPE=ENTRY,PROGRAM=ACCESS46, *
 TRANSID=XT46,TWASIZE=250)see note a
DFHPCT TYPE=ENTRY,PROGRAM=TPFXF46, *
 TRANSID=ADMN,TWASIZE=250)see note b
DFHPCT TYPE=ENTRY,PROGRAM=TPFXF46, *
 TRANSID=ATPF,TWASIZE=250)see note b
DFHPCT TYPE=ENTRY,PROGRAM=TPFXF46, *
 TRANSID=BTPF,TWASIZE=250)see note b
DFHPCT TYPE=ENTRY,PROGRAM=ACSBEG46, *
 TRANSID=AB46,TWASIZE=250)see note c
DFHPCT TYPE=ENTRY,PROGRAM=ACSSPL46, *
 TRANSID=AP46,TWASIZE=360)see note c
DFHPCT TYPE=ENTRY,PROGRAM=ACSUCTR,
 TRANSID=ACSU,TWASIZE=250)see note d

Notes:

1. ’XT46’ or the TRANSID transaction ID specified in the ACSDEF sub-table.
2. Plus any other user transactions defined in the TPFXTAB sub-table.
3. ’AB46’ and ’AP46’ are reserved transaction IDs for printing under TPF.
4. These entries are only required if the upper case translation feature is to be implemented. The

program ACSUCTR and transaction ACSU are redundant under CICS 3.3 and above, and
should not be installed (see the section on upper case translation in the section The ACSTAB
Table).

If the transaction AB46 and AP46 are not defined, then the terminal functions of TPF will be
available as normal but printing functions will not be available.

2. In order to automatically activate printer support each time CICS starts, include program ACSBEG46
in the PLT:

DFHPLT TYPE=ENTRY,PROGRAM=ACSBEG46

If ACSBEG46 is not defined in the PLT, printing can be started by starting transaction AB46
from the terminal.

More information about TPF printing is given in the section Printing under TPF.

54

InstallationInstalling TPF in the Host Environment

If CEDA was not used to define the environment, the PLT, PPT and PCT tables must now be
assembled and linked in the usual manner, and the CICS system must be restarted.

If CEDA was used, then the group defined has to be installed.

Step 6: Verify the Installation and Log On

The installation of the TPF component is now finished.

To test the installation, use the ADMN transaction, which logs on to TPF using the predefined user
ID SAGADMIN and password ADMIN:

ADMN (,,ADMIN)

This user ID has a definition on the system data set with the required authorization to define more
user IDs to the system using the user ID maintenance facilities of UUTIL (see the Com-plete Utilities
documentation). The initial password required by UUTIL is PASSWORD, unless otherwise specified
by the sysparm ULOGM.

After defining other user IDs (see the section User ID Considerations), you are recommended to
change the password for SAGADMIN and use the user ID SAGADMIN in emergency cases only.

Installation under TSO (z/OS only)
To install the TPF component under TSO in z/OS environments, proceed as follows:

Step 1: Unload the Installation Data Set

Unload the COMvrs.SRCT and COMvrs.LOA3 libraries from the installation tape.

Please consult the report from the tape creation system in order to determine the order of the files on
the tape. The load library contains the relevent load modules for TSO.

Step 2: Modify the ACSTAB Table

For a full description of the ACSTAB table see the section The ACSTAB Table. An example
ACSTAB is specified in the source library called ACSTAB, use this and modify it to suit your
installation.

The table is subdivided in four parts.

1. ACSDEF describes the ACCESS Default Table which is used to define data used by the host
node. This subtable must be unique for each host region.

2. ACSTBL describes the ACCESS Node Table which lists the various target systems available for
communication with the host system and also the host system with an entry for every TSO host
node.

3. ACSSCHC describes the ACCESS screen-to-hardcopy table. This is not required for TSO.

4. TPFXTAB describes the Transparency table which describes the various transactions you can
use to enter your environment and the way you give user ID, password and data to your system.

55

Installing TPF in the Host EnvironmentInstallation

Each part can be modified to suit your own installation requirements.

Step 3: Assemble and Link the ACSTAB Table

After modification, the ACSTAB table must be assembled and linked using the sample job from the
source library (JCLASMTB).

Step 4: Link the TSO Modules

Using sample job JCLLNKTS, link the TPF module to an appropriate TSO library. Do not use the
load you loaded from tape.

Step 5: Create the TSO Environment

Create and save a CLIST in an appropriate TSO library using the sample given in member
JCLCLIST. This member includes two useful examples of a simple way to invoke TPF under TSO.

The TSORUN member supplied consists of a single statement which is used to control the TSO TPF
programs. Using this simple ADARUN card the SVC number of the Adabas SVC and the Adabas
runtime options can be specified. Please modify the Adabas SVC number in the supplied TSORUN
member to suit your installation.

Note that TPF under TSO communicates using the Adabas SVC via the link routine ADALNK. The
module TPFXTSO is linked with the Adabas module ADAUSER, the first time ADAUSER is called
it loads module ADARUN which subsequently loads the link routine ADALNK to issue the SVC
request.

The ADARUN card, the ADALNK, ADARUN and ADAUSER modules must therefore be
accessible at run-time.

TPFXTSO will load the ACSTAB during initialization so that ACSTAB must also be accessible.

Step 6: Verify the Installation and Log On

The installation on the host side is now finished. To test the installation, execute the CLIST created.

To log on directly to TPF with the predefined userid SAGADMIN, use the optional keywords
tranid , nodeid, userid and password in the CLIST.

EX ’xx.xx.xx(clist)’ ’TRANID(ADMN) NODEID (COM51) USERID(SAGADMIN)
PASSWORD(ADMIN)’

See the example job in the source library (JCLCLIST).

This user ID has a definition on the system data set with the required authorization to define more
user IDs to the system using the user ID maintenance facilities of UUTIL (see the Com-plete Utilities
documentation). The initial password required by UUTIL is PASSWORD, unless otherwise specified
by the sysparm ULOGM.

After defining other user IDs (see User ID Considerations), you are recommended to change the
password for SAGADMIN and use the user ID SAGADMIN in emergency cases only.

56

InstallationInstalling TPF in the Host Environment

Installation under Com-plete
To install the TPF component under Com-plete, proceed as follows:

Step 1: Unload the Installation Data Set

Unload the COMvrs.SRCT and COMvrs.LOA3 libraries from the installation tape.

Please consult the report from the tape creation system in order to determine the order of the file on
the tape. The load library contains the load modules for Com-plete.

On VSE systems, note that the host.load library is the TPFvrssublibrary unloaded in the installation
procedure using the sample JCS JCLINST1.

Step 2: Modify the ACSTAB Table

For a full description of the ACSTAB table see the section The ACSTAB Table. An example
ACSTAB is specified in the source library called ACSTAB, use this and modify it to suit your
installation.

The table is subdivided in four parts.

1. ACSDEF describes the ACCESS Default Table which is used to define data used by the host
node. This subtable must be unique for each host region.

2. ACSTBL describes the ACCESS Node Table which lists the various target systems available for
communication with the host system and also the host system with an entry for every TSO host
node.

3. ACSSCHC describes the ACCESS screen-to-hardcopy table. This is not required for Com-plete.

4. TPFXTAB describes the Transparency table which describes the various transactions you can
use to enter your environment and the way you give user ID, password and data to your system.

Each part can be modified to suit your own installation requirements.

Step 3: Assemble and link the ACSTAB Table

After modification the ACSTAB table must be assembled and linked using the example job from the
source library (JCLASMTB).

Step 4: Link the Module for Com-plete

With the example job JCLLNKCO, link the TPF module to an appropriate load library specified in
the COMPLETE start-up procedure. Please do not link the module to the load you loaded from tape.

Step 5: Create the Com-plete environment

Catalog the linked TPF module with ULIB using the following command:

ULIB CAT,TPF46,RG=32K,PV

57

Installing TPF in the Host EnvironmentInstallation

Step 6: Verify the Installation and Log On

The installation on the host side is now finished. To test the installation, call the module TPF46 from
the USTACK menu. Log on directly to TPF with the predefined user ID SAGADMIN and password
ADMIN.

This user ID has a definition on the system data set with the required authorization to define more
user IDs to the system using the user ID maintenance facilities of UUTIL (see the Com-plete Utilities
documentation). The initial password required by UUTIL is PASSWORD, unless otherwise specified
by the sysparm ULOGM.

After defining other user IDs (see the section User ID Considerations), you are recommended to
change the password for SAGADMIN and use the user ID SAGADMIN in emergency cases only.

What Next?
TPF is now up and ready for work. How you continue depends on whether you have installed TPF for the
first time or whether you are migrating from a previous version.

If you have installed TPF for the first time, no further migration is necessary. You can continue with
customization steps described in the Com-plete System Programming documentation and the Com-plete
Utilities documentation.

If you are going to use the model user ID, SYSCOM, then you will need to modify the definition of this
user to suit your requirements (via the UUTIL subfunction UM).

58

InstallationInstalling TPF in the Host Environment

General Logon Authorization
This chapter covers the following topics:

User ID Considerations

Program Authorization

Password Considerations

User ID Considerations
In order to establish communication with Com-plete, a user must supply a valid user ID and password.

Initially, two user IDs are defined:

SAGADMIN, the ID for the system administrator;

SYSCOM, a model user ID for other users.

Using the administrator ID SAGADMIN, you can define further user IDs for other users. If a user ID has
been defined to Com-plete, the profile defined for that user ID is used whenever a user logs on with that
user ID.

If a user logs on with a user ID unknown to Com-plete, the user is assigned the profile specified by the
MODEL parameter in the TPFXTAB subtable (see the section The ACSTAB Table). This is typically the
provided default SYSTPF, but you can define other model profiles as required.

Program Authorization
Any programs to be executed under Com-plete must be added to the menu list maintained on the system
data set, and must also be specified in the user’s profile (see the UUTIL functions UM, ML and UP).
Users cannot invoke programs that are not listed in the profile assigned to their user ID, except USTACK.

USTACK can be invoked as a direct call, as specified by the TPFPGM parameter
{TPFPGM=(DCALL,USTACK)}. Under normal circumstances, you are advised for the sake of
convenience, to provide a fairly comprehensive default user profile (SYSTPF). This is recommended
because the TPFXTAB subtable ultimately determines which programs can actually be started by the user.

Password Considerations
Without External Security

The following considerations apply if the target Com-plete system is not running under the control of an
external security system (SECSYS sysparm is not specified).

1. If the user ID entered by the user is defined in the Com-plete system, the supplied password is
validated by Com-plete during the logon process, and if correct, the user is logged on. The user is
assigned a profile according to the specifications in the system data set.

59

General Logon AuthorizationInstallation

Note:
If a user is defined to the target Com-plete system but the logon specifies a model user ID, then the
profile will be taken from the model user ID and not from the definition of the user ID logging on. See the
MODEL parameter in ACSTAB.

2. If the user ID entered by the user is not defined in the Com-plete system and a MODEL user ID
exists, the supplied password is not validated by Com-plete. The user is logged on and assigned a profile
according to the MODEL definition.

3. If the user ID entered by the user is not defined in the Com-plete system and no MODEL user ID
exists, the logon request is rejected.

With External Security

The following considerations apply if the target Com-plete system is running under the control of an
eternal security system (SECSYS sysparm is specified).

1. If the user ID entered by the user is defined in the Com-plete system, the supplied password is
validated by the external security system during the logon process, and if correct, the user is logged
on. The user is assigned a profile according to the specifications in the system data set.

Note:
If a user is defined to the target Com-plete system but the logon specifies a model user ID, then the
profile will be taken from the model user ID and not from the definition of the user ID logging on.
See the MODEL parameter in ACSTAB.

2. If the user ID entered by the user is not defined in the Com-plete system and a MODEL user ID
exists, the supplied password is validated by the external security system. If the password is correct,
the user is logged on and assigned a profile according to the MODEL definition. The security profile
(ACEE) defined by the external security system is taken.

3. If the user ID entered by the user is not defined in the Com-plete system and not defined to the
external security system, the user is logged on only if a MODEL user ID exists. The user is assigned
a profile according to the MODEL definition, but no ACEE is provided. This means that any request
for items protected by the external security system will be rejected (but see the note below).

Note:
If the MODEL user ID is defined to the external security system, the security profile (ACEE) defined
in the security system for the MODEL user ID is used.

60

InstallationGeneral Logon Authorization

The ACSTAB Table
The ACSTAB table is subdivided into the four subtables ACSDEF, ACSTBL, ACSSCHC and
TPFXTAB.

The ACSTAB always starts with the macro ACSSTART, which is required for every ACSTAB.
ACSSTART must be the first entry in every ACSTAB.

Thischapter covers the following topics:

ACSDEF Subtable

ACSTBL Subtable

ACSSCHC Subtable (CICS only)

TPFXTAB Subtable

Passing Data

Overriding Information

ACSDEF Subtable
The ACSDEF subtable describes the default values of the system, and defines data used by the host node.
These include:

The host node ID (DBID);

The name of the Adabas TPF host driver program (APPLID);

The name of the continuation transaction (TRANSID);

The name of the program which invokes the Adabas SVC for communication with the target system
(Adabas).

The ACSDEF subtable is only needed if either:

CICS is the host system, or

for any other system if the size of the format buffer is to be increased to a value higher than the
default 3840 bytes.

ACSDEF must be unique for each CICS host system. If you are running Adabas TPF on two CICS you
need two ACSTABs, each with a different ACSDEF subtable.

The following parameters can be specified with the ACSDEFLT macro, which describes the ACSDEF
subtable:

61

The ACSTAB TableInstallation

Parameter Meaning

DBID This is the 1 byte value representing the pseudo-DBID to be used to identify
the CICS host system. As default, use DBID 127.

TRANSID This is the 4 byte character string representing the transaction name to be
used by the TPF component for internal continuation. As default, use the
trans ID "XT46". If you use a different TRANSID, it must be defined in the
PCT or with CEDA.

APPLID This is the 8 byte character string representing the module name of the
CICS driver that is invoked with the Reverse Access call (SCALL). The
Reverse Access call is described in the section on transparency in this
documentation.

CONTID This is the 4 byte character string representing the transaction name to be
used by TPF for the Reverse Access call (SCALL). The Reverse Access call
is described later in this documentation.

Adabas This is the 8 byte character string representing the name of the module to be
loaded that performs the link to Adabas (this module must reside in the
CICS loadlib).

FORMATSZ This is the 2 byte character string representing the value for the format
buffer size. The default format buffer size is: {(lines x columns) x 2}; for
example, (24 x 80) x 2=3840. If you wish to increase the size of the format
buffer because of large Natural screens or Reverse Access, you can increase
the value here. The maximum value is 32k bytes, otherwise the assembler
returns a high return code. No value of less than 3840 is accepted. If you
specify a lower value, it is overridden by the default value 3840. If this
parameter is required, then the subtable ACSDEF must be specified for all
host systems.

PSEUDO YES or NO, indicating whether CICS processing should be
pseudo-conversational or not.

ACSTBL Subtable
The ACSTBL subtable contains a list of target systems available for communication with the various host
systems. The table provides a cross-reference of node names to node numbers. Routing requests made to
the Adabas TPF task are evaluated according to the contents of this table. For each target system you wish
to communicate with Adabas TPF, you need one ACSTABLE macro with its parameters.

The following parameters can be specified with the macro ACSTABLE which describes the ACSTBL
subtable:

62

InstallationThe ACSTAB Table

Parameter Meaning

DEST This is the 8 byte character string that is used to identify the Com-plete
target node. For access to a target node from a batch job this must be
‘‘BATCH".

NODEID This is the 2 byte value equivalent of the DBID for use with the Adabas
SVC. Use the value you specified for the sysparm ACCESS-ID in the target
system.

SVC This is the one byte value equivalent to the Network Router (Adabas SVC).
Use the value you specified for the sysparm ACCESS-SVC in the target
system. This parameter only has meaning with DEST=BATCH.

MENU Specifies whether a menu showing all valid destinations is to be displayed
under the following circumstances: If the TPF driver was entered directly
(that is, bypassing the transparency feature), then if no destination is
specified (or the specifies destination is not found), then the menu of all
valid destinations is displayed by the TPF terminal task.

COMMENT This is the 50 byte character string the TPF terminal task displays in MENU
mode for each destination.

ACSSCHC Subtable (CICS only)
This subtable is called the screen-to-hardcopy table. The subtable is only needed if you use the
screen-to-hardcopy function under TPF. The screen-to-hardcopy function is only available for CICS. One
ACSHARDC statement must be specified for each terminal and its assigned printer.

The following parameters can be specified with macro ACSHARDC, which describes the ACSSCHC
subtable:

Parameter Meaning

TERMID This is the 4 byte character string used to identify the terminal ID.

SCHCNR This is the 4 byte character string used to identify the terminal ID of the
destination hardcopy printer.

TPFXTAB Subtable
This subtable is called the Adabas TPF Transparency table. The purpose of Adabas TPF transparency is to
provide an automatic method of integrating Adabas TPF in an existing Natural CICS/TSO installation,
and to provide an easy method of implementing new user transactions that invoke Com-plete.

With the user transactions, the startup of a Adabas TPF session is very simple for the user. Every user can
be routed to his working environment (Natural) directly, or he can select a transaction that first displays
the Com-plete USTACK menu, from which the user can start the required program.

The macro USERDEF describes the TPFXTAB subtable. There are four types of USERDEF statements:
GLOBAL, GROUP, TRAN and END. These are described in detail below. The format of a USERDEF
macro statement is:

63

The ACSTAB TableInstallation

USERDEF type,keyword parameters

USERDEF GLOBAL:
All keyword parameters have installation defaults that can be overridden by a USERDEF GLOBAL
statement. When assembly of the table begins and a USERDEF GLOBAL statement is encountered,
the values specified for the keyword parameters on that statement become the global defaults for the
rest of the assembly, or until a subsequent USERDEF GLOBAL statement provides new defaults.
GLOBAL-type USERDEF statements are optional, and are usually used to establish values that are
consistent for most transactions, such as NODEID. Note that if a keyword parameter specified on a
USERDEF GLOBAL statement is not specified on a subsequent USERDEF statement, it retains the
specified value.

USERDEF GROUP:
This type of USERDEF statement is optional and specifies a group of terminals or users within the
TPFXTAB to which the specified keyword parameter values are to apply. The specified values
override the USERDEF GLOBAL specifications. The values are valid until another GROUP or
GLOBAL statement is encountered. Note that if a keyword parameter specified on one USERDEF
GROUP statement is not specified on a subsequent USERDEF GROUP statement, it reverts to its
original global value (as set by either a previous USERDEF GLOBAL statement or the installation
default).

USERDEF TRAN:
The USERDEF TRAN statement is the only statement that actually generates a table entry. This
means that at least one USERDEF TRAN statement is required, and one statement must exist for
each transaction that can use the transfer program. The table entry is generated using the keyword
parameters explicitly specified. If a parameter is not specified on a USERDEF TRAN statement, the
value is determined according to the following hierarchy: first the current GROUP value is searched;
if not found, the current GLOBAL value is searched; if not found, the installation default is assumed.

A USERDEF TRAN statement is preceded by a 1-4 character name field that specifies the
transaction ID to which the table entry is to apply. For CICS, the transaction ID is the actual
transaction ID that invokes the transaction. If a valid CICS transaction ID is called which invokes the
transfer program, but which has no entry in the TPFXTAB subtable, then the parameters specified for
the first transaction entry in TPFXTAB are taken.

USERDEF END:
The USERDEF END statement is required as the last USERDEF statement in the TPFXTAB
subtable.

Example:

Following is an example of a TPFXTAB subtable generation:

 USERDEF GLOBAL,NODEID=COMXX,USERID=OPID
 TPFPGM=NAT21,ACSPGM=ACCESS46
ATPF USERDEF TRAN
BTPF USERDEF TRAN,TPFPGM=NAT22,DATA=’string1’
 USERDEF GROUP,TPFPGM=TESTNAT
PAYQ USERDEF TRAN,DATA=’string2’
PRTK USERDEF TRAN,DATA=’string3’
 USERDEF END
 END

64

InstallationThe ACSTAB Table

The table definition provides four transactions: ATPF, BTPF, PAYQ and PRTK.

The transaction ATPF follows all of the rules specified in the GLOBAL statement; the node ID is
COMXX, the user ID is taken from the CICS OPID, the program invoked first on the target side is
NAT21, and the name of the TPF ACCESS program is ACCESS46.

The transaction BTPF also follows the rules specified in the GLOBAL statement, but it invokes
program NAT22 on the target side and passes data to it.

The transaction PAYQ belongs to a group, where the program TESTNAT is invoked, to which data
string2 is passed.

The description of PAYQ also applies to transaction PRTK, except that different data is passed to the
TESTNAT program.

The keyword parameters available for the USERDEF statements are described in the following
subsections.

NODEID Parameter

This parameter indicates how the name of the Com-plete node is to be determined for the
transaction. This node name must be defined in the ACSTBL subtable.

Possible values for the NODEID parameter are:

Value Meaning

REQ Node ID must be specified via screen input (see section
Overriding Information).

(DEFLT,name)Use specified name as default node ID.

(ALWAYS,name) Always use name as node ID.

name Node ID to be used.

EXIT Use user exit to determine node ID. For more information, see the
section Exits for the TPF Component.

USERID Parameter

The USERID parameter indicates how the TPFXFER program is to determine the user’s TPF
LOGON ID when logging the user on to the associated transaction. A valid user ID must be
specified, either on the TRAN statement or on a previous GLOBAL statement; if no valid user
ID is specified, an assembly error occurs. One option is to hard-code a value for the transaction.
This would mean that every time the given transaction is invoked, ACCESS attempts to log on
to Adabas TPF using that ID.

Possible values are:

65

The ACSTAB TableInstallation

Value Meaning

REQ User ID must be specified via screen input (see section
Overriding Information).

EXIT Use user exit to determine user ID (CICS only). For more
information, see the section Exits for the TPF Component.

(DEFLT,name)Use specified user ID as default.

(ALWAYS,name) Always use this user ID.

name se this user ID.

OPID se CICS OPID as user ID.

TERM se CICS TERMID as user ID.

USER Use CICS USERID as user ID. This is especially useful when an
external security system, such as RACF, is in place.

For information on how user IDs are defined under Com-plete, see User ID Considerations in
the installation section.

Note that the password generated is always PASSWORD. If the user ID is defined in the
Com-plete system, this field must therefore be overwritten by means of screen input (see the
section Overriding Information below).

An exception to this is when USERID=USER is specified, when the generated password is set
to indicate that the password verification has already been performed by the host system. In this
case, if the target Com-plete system is running under the control of an external security system,
it will perform a logon without password verification.
If the target Com-plete system is not running with an external security system, the password
must be overwritten as described above.

It is not possible under Com-plete for a user to log on with the same user ID more than once.
Therefore, under CICS, you must take care when specifying USER=USER or USER=OPID that
two (or more) users do not logon with the same user ID. If this does happen, however, the
results are undefined, but the first user to log on with the ID will probably be logged off, and the
second user to log on with the ID is logged on.

TRANID Parameter

This specifies the CICS transaction associated with this entry. As default the label specified on
the statement is taken.

Note:
The label can only start with an alphabetic character, so if an alphanumeric transaction is
required, then this parameter must be specified.

TPFPGM Parameter

This parameter is used to indicate the name of a program to be invoked under Com-plete. If the
transfer program is being invoked by a 3GL front-end, it will use whatever name was passed to
it, overriding the TPFPGM value. This parameter is especially useful when setting up a new
transaction which does not use a 3GL front-end.

66

InstallationThe ACSTAB Table

Possible values:

Value Meaning

name Name of the program to be invoked in the Com-plete target
system. Users are routed directly to this program, and when
they finish work with it, they are returned to the Adabas TPF
USTACK menu in TPF mode, from where they can select
new programs or logoff from Com-plete with the command
LOGOFF.

Note:
USTACK cannot be called directly in this format (that is,
TPFPGM=USTACK is invalid). The program name must be
defined on page 1 of the USTACK menu for this user,
otherwise access to it is denied.

(DCALL,name) Direct call in TPFPGM parameter USTACK menu The
direct-call, where name is the name of the program to be
called directly. When users finish work with this program,
they are returned to CICS or TSO, bypassing the Com-plete
USTACK menu. However, USTACK can be called in this
format: TPFPGM=(DCALL,USTACK). In this case, users
are routed to the USTACK menu in Standard mode.

<blank> If nothing is specified with the parameter TPFPGM on the
TRAN level and no GROUP or GLOBAL default is in place,
users are routed to the Com-plete menu of USTACK, from
where they can select one of the listed programs. When they
finish work with the selected program, they are returned to
the Com-plete USTACK menu, from where they can logoff
with the LOGOFF command.

Important:

The setting of the TPFPGM parameter can be overridden if you specify OVER=ALL (see
below). See also the section Overriding Information.

ACSPGM Parameter

Specifies the name of the program to which TPFXF46 is to transfer control in order to start up
the Com-plete conversation. It simply indicates the proper name of the ACCESS program.
Typically, ACCESS46 is the default for this version.

The format of this parameter is:

ACSPGM=name

DATA Parameter

This parameter specifies data to be passed to the program specified by the TPFPGM parameter,
for example to pass data to Natural (optionally, this data can consist of the escape character
specified by the ESCCHAR parameter to indicate where user-specified data can be embedded.)

67

The ACSTAB TableInstallation

This parameter can also be used to define a string of data to be passed to a new transaction
which does not have a 3GL front end. The default is: all extra data is passed.

Possible values:

Value Meaning

string Data string is passed.

<blank> Specifies the escape character defined by the ESCCAR
parameter.

NO No data is passed.

For more information, see the section Passing Data.

ESCCAR Parameter

Defines an escape character associated with the DATA parameter. This character can be used by
the DATA parameter to allow embedding of user-specified data.

The format of this parameter is:

ESCCAR=char

The default is the paragraph sign §. See also the section Passing Data.

ENDCHAR Parameter

This parameter specifies a character which can be used internally by this macro in evaluating the
DATA parameter. This character cannot appear in the DATA string. The only reason to ever
override ENDCHAR is if the default period (full stop) "." appears within a DATA parameter.

The format of this parameter is

ESCCAR=char

The default is the period (full stop) (.).

OVER Parameter

This parameter indicates whether items defined in the TPFXTAB subtable can be overridden by
screen input from the user. Up to two items can be specified, for example, the notation
OVER=(NODEID,DATA) means the NODEID and DATA parameters can be overridden.

A password can be overridden unless OVER=NO has been specified. If a transaction has
OVER=NO defined, as well as DATA=NO, any data on the screen passed during an XCTL is
ignored by TPFXF46 (see also the section Overriding USERDEF Parameters below).

Possible values include:

68

InstallationThe ACSTAB Table

Value Meaning

NODEID User can override NODEID value.

USERID User can override USERID value.

DATA User can override DATA value.

ALL User can override all parameters.

NO User cannot override any parameter.

Default: OVER=NO

MODEL Parameter

This parameter specifies the name of a model user ID defined in the Com-plete target system
which will be used by the target system to generate the profile for this user. User ID SYSCOM,
which can be taken as a model user ID, is provided as default on the supplied installation data
set. Note that the MODEL user ID specified here must be defined in the target Adabas TPF
system.

If you specify a model user ID with the MODEL parameter, then the user ID used at logon need
not be defined in the target Com-plete system, that is, unkown user IDs can log on to the target
Com-plete system.

If the parameter MODEL is not specified, then APPLYMOD 57 must be set in the target system
to allow unknown user IDs to log on.

The format of the MODEL parameter is

MODEL=userid

There is no default.

Specifying MODEL=NONE forces no generation of the model user ID parameter. You can use
this to override a global MODEL specification for a single application.

See also the User ID Considerations section.

Passing Data
Data passed to the target program is constructed using the DATA and ESCCHAR parameters associated
with a transaction, as well as input data from the screen, or data passed to TPFXFER as part of transfer of
control.

A DATA parameter specifies the string of data to be passed to the target program. The data consists of a
string of characters enclosed by single quotation marks, for example:

DATA=’STACK=(LOGON SASAK)’

A transaction defined with such a parameter always passes the indicated data to the target program. One of
the characters within the data string can be the escape character "at" sign (@), for example:

69

The ACSTAB TableInstallation

DATA=’STACK=(LOGON SASAK;@)’

The escape character is a place holder, where any data passed to TPFXFER is placed before it is passed to
the target program. For example, if the user follows the transaction ID with the characters LOOKUP, then
the data passed to the target program is:

DATA=’STACK=(LOGON SASAK;LOOKUP)’

If the escape character appears more than once within a given data string, then only the first occurrence is
replaced with the input data. If no input data is provided, the escape character is simply removed from the
string passed to the target program.

The default DATA parameter value is "@" (at sign), which means that the string passed to the target
program is the data provided by the user, or by the program that invokes TPFXFER.

If the "at" sign itself needs to be embedded in a DATA string, the ESCCHAR parameter can be used to
change the escape character. Note that the DATA string is actually evaluated while the USERDEF
statement in which it appears is being processed, during the creation of the TPFXTAB subtable. This
means that the ESCCHAR value is the escape character currently in effect.

The following example illustrates this:

 USERDEF GLOBAL,DATA=’A$B*C,ESCCHAR=’$’
 data is ’A$B*C’, ESCCHAR is $
MERC USERDEF TRAN,ESCCHAR=’*’
 data is ’A$B*C’, ESCCHAR is ’*’
 AREC USERDEF TRAN,DATA=’D$E’
 data is ’D$E’, ESCCHAR is ’$’

In this example, the DATA parameter associated with the MERC transaction is "A$B*C". In this case, the
escape character is "$", since this is the value of the ESCCHAR parameter when the DATA statement was
specified. The DATA string for the AREC transaction is "D$E", and the escape character is again "$".

If no data is to be passed to the target program, specify DATA=NO.

The maximum length of the data which can be passed to the target program depends on the construct used
to send it:

1. Using the construct:

TPFPGM=(DCALL,pgmname),DATA=<data>

the maximum length of data is 240 bytes.

2. Using the construct:

TPFPGM=pgmname,DATA=<data>

the maximum length of data is 160 bytes.

Overriding Information
A user or programmer can override the parameters set in the TPFXTAB subtable by overriding them with
screen input. The purpose of these overrides is to simplify certain testing situations, for example when a
test system exists on a separate node from a production system, or if certain user IDs are handled

70

InstallationThe ACSTAB Table

differently on the target system.

Override authorization and for which transaction(s) it is valid is defined by the OVER parameter in the
TPFXTAB subtable.

If some overriding information is to be specified as screen input, certain points must be noted and certain
conventions must be followed:

When transparency program TPFXF46 is invoked directly using a transaction associated with it - for
CICS - in the PCT, any data following the transaction ID on the screen is processed by TPFXF46.

The data processed by TPFXF46 when it is invoked via a NATCICS-type XCTL is the string of data
specified as part of the NAT CICS parameter.

Overrides can be specified by preceding any data with override information, surrounded by
parentheses, listed in the following order:

tranid (nodeid,userid,password,systemdata)userdata or
tranid (nodeid,userid,password,systemdata) userdata

where:

systemdata is the name of the program to be invoked directly.
userdata is the data to be passed to the program to be invoked.

For example:

atpf (tpf46,admin46,admin,nat21) fuser=(9,81)

Note that if the direct-call option is specified in the table for the transaction for which you override
the program name, the direct-call remains in effect (see explanation of the TPFPGM parameter
above).

If any parameter you are allowed to override is omitted within the parentheses, it must be substituted
by a comma as placeholder. The value for the omitted parameter is then taken from the TPFXTAB
subtable.

Examples:

tranid (,userid,password,systemdata) userdata
tranid (,,password,systemdata) userdata
tranid (,,,systemdata) userdata

Exceptions:

1. If only nodeid is specified to be overridden (OVER=NODEID) and you override it, no
placeholder commas are required, for example:

tranid (nodeid)

2. If everything can be overridden (OVER=ALL), but you do not wish to override the systemdata,
no placeholder comma is required for the systemdata operand, for example:

71

The ACSTAB TableInstallation

 tranid (,,password) userdata

3. If you can override systemdata and userdata, but you do not wish to, no placeholder commas are
required, for example

tranid (,,password)

If you have specified the parameter OVER=ALL in the TPFXTAB subtable, you can
override the TPFPGM with your screen input. If you override the program name using
screen input, it is treated as if it was in the table for this transaction as follows:

If it was specified as a direct-call in the table, you are directed straight to the program, and
when you finish with the program, you are returned to your host environment (CICS or
TSO);

If it was not specified as direct-call in the table, (simply TPFPGM=prog1) and is to be
overridden with prog2, then prog2is called directly. However, on finishing, you will see
the Com-plete mode menu of USTACK, from where you can select any listed program, or
log off using the LOGOFF command.

72

InstallationThe ACSTAB Table

CICS: Special Considerations
This chapter covers the following topics:

Printing Under TPF

Upper/Lower Case Considerations

Printing Under TPF
Printing using a local CICS printer is accomplished by programs ACSBEG46 and ACSSPL46, which run
under the CICS host system. ACSBEG46 is related to the transaction AB46, and ACSSPL46 to the
transaction AP46.

Any printer to be used must be defined in the TIBTAB of the Com-plete target system with the related 4
Byte CICS termid and the corresponding CICS pseudo-DBID (see the ACSDEF subtable). For example:

TIBT TIBSTART NOTIBS=100
*
* Define a standard ACCESS printer
 TIB 2,ACCESS,3288L,NAME=P001,GROUP=(ALL=NO),NODEID=127
* Define an SCS-ACCESS printer
 TIB 3,ACCESS,3288L,NAME=P002,GROUP=(ALL=NO),NODEID=127,OPT=(SCS)
* Define a Graphics ACCESS printer
 TIB 4,ACCESS,3287L,NAME=P003,GROUP=(ALL=NO),NODEID=127,OPT=(SCS)
 TIBEND

Note that only printers must be defined in the TIBTAB. Com-plete allocates TIB entries for terminal
devices dynamically.

Program ACSBEG46 communicates with the Com-plete target system to determine whether any printout
is queued for this local CICS printer. If printout is queued, it starts the program ACSSPL46 which actually
performs the printing on the host side.

If ACSBEG46 is started via the PLT entry suffix=in, it initiates itself with interval control, using a delay
of one minute.

If any error occurs, for example, if the printer is not in service or has no ATI specified, the transaction
AB46 does not attach the AP46 transaction and an appropriate error message is logged to the temporary
storage queue TPFE.

You can read all messages with the browse command CEBR TPFE from CICS in the temporary storage
called TPFE. If AB46 is started from a terminal, the message:

ACS5008 - ACSBEG nnn task(s) attached

is displayed at the terminal, where nnn is the number of AP46 tasks started.

Messages are also written to the transient data queue called TPFE, and this is printed in the SYSLOG of
CICS if any destination is given in the DCT table for the name TPFE. The destination can be specified
directly or indirectly in the table, so that the messages can be routed together with other messages to a data
set, or you can specify a special data set for your TPF printer messages.

73

CICS: Special ConsiderationsInstallation

Note that ACSSPL46 is a standard CICS command level program and assumes that the correct CICS
definitions have been made for any output device it uses. This is especially true in an MRO environment
when ACSSPL46 runs in the AOR and the printers are serviced in the TOR. It is the responsibility of the
CICS definitions to ensure that the output is routed to the remote printers correctly.

Upper/Lower Case Considerations

Pre CICS 3.3

By default, TPF runs in pseudo-conversational mode under CICS. In this mode, the user may encounter a
well-known CICS problem relating to upper-case translation..

Upper-case translation in CICS is fixed throughout a session on a terminal basis, rather than being
dynamic on an individual transaction basis. When CICS upper-case translation is in effect, the first screen
received by a task is always translated to upper-case. In pseudo-conversational mode, this means that ALL
screens are translated to upper-case since the ASIS option of an EXEC CICS RECEIVE applies only to
the second and subsequent messages received for a transaction.

If, on the other hand, the user’s terminal is defined to CICS without upper-case translation, then
commands to initiate transactions (the transid) must be entered with the terminal shift key held down,
since CICS does not recognize transaction IDs entered in lower-case.

The problem arises when the user’s terminal has CICS upper-case translation enabled
(FEATURE=UCTRAN in the TCT macro), but an individual transaction requires text to be entered and
saved "as is".

ACSUCTR Transaction Level Program

TPF solves the problem of upper-case translation under CICS by calling a user-defined program called
ACSUCTR to enable/reset upper-case translation.

A sample program ACSUCTR is provided on the TPF source data set. This example determines
dynamically whether CICS upper-case translation is in effect for a terminal. If this is the case, the program
deactivates upper-case translation for the terminal by modifying the terminal’s TCTTE. The deactivation
is in effect for the duration of the transaction.

The program works only if the terminal’s TCTTE specifies UCTRAN. If this is not the case, ACSUCTR
returns control immediately.

If ACSUCTR is in effect and a TPF program terminates abnormally, upper-case translation remains
deactivated. ACSUCTR can be started manually by entering transid ACSU at the affected terminal.

Note:
You will know when this situation arises, as CICS will not recognize transactions typed in lower-case.

Important:

The program ACSUCTR and the transaction ACSU must be defined in the PPT and PCT respectively (see
the installation instructions for the CICS environment in this documentation). If these definitions are not
made, the TPF upper-case translation facility is disabled.

74

InstallationCICS: Special Considerations

Post CICS 3.3

With CICS releases after version 3.3 the problem with upper-case translation has been resolved in CICS
itself. It is possible to define upper-case translation for the terminal and transaction separately. Using
Resource Definition Online (CEDA) you should define TERMTYPE UCTRAN (TRANID) and PROFILE
UCTRAN (NO) for the TPF transactions. For more information about these parameters, please consult the
appropriate CICS documentations.

The program ACSUCTR and transaction ACSU are redundant under CICS 3.3 and later, and should not
be installed.

75

CICS: Special ConsiderationsInstallation

Transparency (CICS and TSO) and Reverse
Access (CICS)
This chapter covers the following topics:

Transparency Under CICS and TSO

Reverse Access (CICS only)

Transparency Under CICS and TSO
Transparency provides an automatic method of integrating the TPF component in an existing Natural
CICS or TSO installation, as well as an easy way of implementing new transactions that invoke TPF.

In the CICS environment, two programs are primarily responsible for controlling TPF interaction: the
ACCESS46 program and the Transfer program.

In the TSO environment, module TPFXFER includes the ACCESS program and the Transfer
program.

In both environments, the function of these programs is the same.

The ACCESS Program

The ACCESS46 program is responsible for all of the actual interaction with the TPF system. In order to
startup a TPF session, four items must be defined to the ACCESS program:

1. The node ID of the Com-plete system to be accessed; this name is defined in the ACSTBL subtable;

2. The user ID with which to sign on to Com-plete;

3. A password.

4. Data to be interpreted by the target system.

Note:
See also the section User ID Considerations for more information on user ID and password.

The Transfer Program

The Transfer program (named TPFXF46) is responsible only for simplifying the startup of a Com-plete
session. The Transfer program uses a table (the Transfer table, TPFXTAB subtable), defined by the
system administrator to automatically determine the proper node ID and user ID, and invokes ACCESS,
passing over these items, including a dummy password. This means that:

1. The user does not need to perform an extra logon to Com-plete (since a CICS or external security
user ID may have been used);

76

InstallationTransparency (CICS and TSO) and Reverse Access (CICS)

2. Programs that invoke Com-plete need not be modified to determine these items.

Programs written in current 3GL (COBOL, Assembler, PL/1) that pass control directly to Natural under
CICS or TSO need not be changed to pass control to Natural under Com-plete. The 3 GL programs
continue to run in the CICS address space/partition, but instead of transferring control to Natural, they can
pass control to the Transfer program. This can be implemented by installing the Transfer program with the
same name as that used for Natural under CICS or TSO. Based on the data passed to it under these
circumstances, the transfer control program can determine the following items:

The Natural program to be invoked;

The data to be passed to that program;

The name of a CICS or TSO program to which control is to be transferred when the Natural program
has run. The node ID and user ID are determined using the definitions in the Transfer table. Thus,
after the 3GL program transfers control to the Transfer program, Natural is invoked automatically
under Com-plete, and the process is invisible (transparent) to the user and to the programmer.

A second function of the Transfer program is to simplify definition of new CICS transactions. If a
transaction is defined in the PCT as invoking TPFXF46, and the proper information is placed into the
Transfer table, a user can invoke TPFXF46 directly using that transaction code; the Transfer program
determines all of the information needed to start up a Natural program under TPF. This eliminates the
need for many 3GL front-ends.

Reverse Access (CICS only)
Reverse Access is another feature of TPF transparency and is available for CICS sites only. Many Natural
programs currently under CICS call 3GL subroutines to perform certain functions. If these subroutines do
not directly use any CICS facilities, then they can simply be installed to run in the TPF address
space/partition. However, if a 3GL subroutine uses CICS for any reason, then it must run in the CICS
address space/partition.

A facility is required to arbitrate between the Natural program, running in the target system, and the
subprogram, running in the host system. The Subprogram Transparency feature of TPF performs this
function and thus simplifies the implementation of TPF in a Natural CICS implementation.

There are two variants of Reverse Access:

Reverse Access with Immediate Return
If a subroutine that returns immediately needs to be invoked using Reverse Access, then a "stub
program" with the same name as the subroutine is installed in the TPF system. This stub program
consists of two lines of Assembler language and is used mainly to pass control.

When a Natural program calls the stub program, TPF passes information to the ACCESS program
(running under CICS), which in turn invokes the actual subroutine. When the subroutine has
completed, it returns control to ACCESS, which in turn will return control to TPF and the Natural
program.

Reverse Access with Delayed Return
If a subroutine that performs non-conversational functions needs to be invoked using Reverse
Access, then a user-written "stub program" must be called. This program must issue a pseudo screen
I/O which is interpreted by ACCESS to invoke the required subroutine. Before linking to the

77

Transparency (CICS and TSO) and Reverse Access (CICS)Installation

user-subroutine, ACCESS saves its CICS environment in temporary storage and passes to the
user-subroutine the name of a program to be invoked by the subroutine on termination. On being called,
this program restores the ACCESS environment and continues the Reverse Access calls, returning to the
original caller of the Reverse Access function.

Calling Reverse Access with Immediate Return

Installing TPFSTUBM

TPFSTUBM calls interface routines to perform TPF-specific functions. These subroutines were
installed during the installation of the Com-plete target system. An example job to link
TPFSTUBM is provided in the source library (member JCLLSTUB).

The linked program TPFSTUBM must exist in the residentpage space of Com-plete. This can be
accomplished by including the following startup parameter in the sysparms:

RESIDENTPAGE=TPFSTUBM

CICS Subprogram Preparation

Transparency can be invoked for a given subprogram only if that subprogram exists in the CICS
load library, and has an associated PPT entry.

Stub Program

The source for the stub program consists of two lines of Assembler code:

The first line invokes the TPFSTUBC macro;

The second line is the END statement.

The label of the TPFSTUBC statement must be the name of the program. The syntax for the
entire stub program is illustrated below: progname TPFSTUBC END

where progname is the program name.

This program must be assembled and linked into a library contained in the Com-plete
COMPLIB concatenation.

Determining Parameter Lengths

Using information passed by Natural, the stub program can determine parameter lengths.

However, sometimes the CALL statement may designate only the first field of a contiguous area
which is being passed as a single parameter. Natural interprets the parameter length as that of
the field specified on a CALL statement, and thus passes an incorrect length to the stub
program.

When coding the TPFSTUBC statement for such a stub program, you can override the length
information being passed by Natural by listing the various parameter lengths (enclosed by
parentheses) after the TPFSTUBC designation.

78

InstallationTransparency (CICS and TSO) and Reverse Access (CICS)

For example:

Natural program call
 01 PARM1 (A80)
 01 PARM2 (A80)
 01 PARM3
 02 FLD1 (A2)
 02 FLD2 (A5)
 02 FLD3 (N7)
 02 FLD4 (B4/1:2000)
 .
 .
 .
 CALL ’CICSPGM’ PARM1 PARM2 PARM3
 .
 .
 .

The corresponding stub program definition is:

CICSPGM TPFSTUBC (80,80,2,5,7,8000)

Calling the Subprogram from Natural

Once the stub program is installed, Subprogram Transparency can be used to invoke the
subprogram from Natural running under Com-plete. When Natural issues the CALL for the
subprogram, the stub program is invoked:

CALL ’progname’

The stub program, along with the TPFSTUBM program, determines the parameters passed by
Natural and passes the appropriate data over to CICS, where the actual subprogram is invoked.
When the subprogram is finished, control returns to Com-plete, and the Natural program
continues.

Data can be passed in either direction.

Sample programs (TESTRE and TESTREV) are included on the source dataset. A sample
Natural program is provided below:

0010 DEFINE DATA LOCAL
0020 01 ALLPARMS
0030 02 A(A250)
0040 02 REDEFINE A
0050 03 AA(A20)
0060 02 B(A250)
0070 02 REDEFINE B
0080 03 BB(A20)
0090 02 C(A250)
0100 02 REDEFINE C
0110 03 CC(A20)
0120 END-DEFINE
0130 MOVE ALL ’1’ TO A
0140 MOVE ALL ’2’ TO B
0150 MOVE ALL ’3’ TO C
0160 DISPLAY ’BEFORE CALL TO REVERSE ACCESS’
0170 DISPLAY AA BB CC

79

Transparency (CICS and TSO) and Reverse Access (CICS)Installation

0180 CALL ’TESTRE’ ALLPARMS
0190 DISPLAY ’AFTER CALL TO REVERSE ACCESS’
0200 DISPLAY AA BB CC
0210 END

Calling Reverse Access with Delayed Return

If you need to call CICS subroutines (via Reverse Access) that use non-conversational functions under
CICS, you must code and install an interface subroutine (a so-called "stub program").

An example Assembler program is supplied on the source data set (member ACSHXC). This program
calls and passes data to a user program called USERPGM. The source data set also contains an example
program with this name.

You must assemble this sample program and link it into a data set contained in the Com-plete COMPLIB
concatenation.

Program USERPGM runs under CICS and can perform non-conversational screen I/Os. It ends with an
EXEC CICS RETURN TRANSID(XTPF) or the transaction name you specified in the ACSDEF subtable
for the internal continuation transaction.

The CICS application program USERPGM must be linked with the CICS stub programs DFHEAI and
DFHEAI0 from the CICS loadlib. You must define the resulting module to CICS with CEDA, or include
it in the PPT.

CICS program USERPGM obtains control with the following data:

4 byte ID ’HXCC’ IDENTIFIER
8 byte pgmname ’ACCESS46’ RETURN PROGRAM
 user data

80

InstallationTransparency (CICS and TSO) and Reverse Access (CICS)

Exits for the TPF Component
This chapter covers the following topics:

USERID exit

NODEID exit

TPFXFEX exit

Exits in ACCESS46

USERID exit
This exit is used to determine the node ID to be used to logon to the Com-plete target. It is invoked if
EXIT is specified for the NODEID parameter in the TPFXTAB subtable, (USERDEF) in ACSTAB.

How to use the USERID exit

Entry is via standard linkage conventions.

Upon entry to the USERID exit, a set a parameters is received in the form of fullword addresses
pointed to by R1.

All registers must be restored to their original values before control is returned from the exit to
the calling program.

R1 The address of the parameter list.

R13 The address of an 18-fullword savearea.

R14 The return address.

R15 The entry point address of the exit.

Parameters

The first address is the address of a 40-fullword work area that can be used as working storage
by the exit. It is recommended that the first 18-fullwords of this area be used as a savearea.

The second address is the address of the appropriate entry in the transparency subtable
(TPFXTAB). The layout of this entry is defined in the DSECT in the copy book CCACSTAB.

The third address is the address of an 8-byte field where the exit should place the node ID to be
used for communication with the target Com-plete system.

Linkage

Change the supplied linkage for TPFXF46 so that the pre-defined exit name TPFXNTCM is
overridden by the name of your choice. Insert the following lines between the INCLUDE
SYSLIB(TPFXCICS or TPFXTSO) and INCLUDE SYSLIB(TPFX01):

81

Exits for the TPF ComponentInstallation

CHANGE userexit(TPFXNODE)
INCLUDE USERLIB(userexit)

The resulting linkage will return a condition code of 4.

NODEID exit
This exit is used to determine the node ID to be used to logon to the Com-plete target. It is invoked if
EXIT is specified for the NODEID parameter in the TPFXTAB subtable, (USERDEF) in ACSTAB.

How to use the NODEID exit

Entry is via standard linkage conventions.

Upon entry to the NODEID exit, a set a parameters is received in the form of fullword addresses
pointed to by R1.

All registers must be restored to their original values before control is returned from the exit to
the calling program.

R1 The address of the parameter list.

R13 The address of an 18-fullword savearea.

R14 The return address.

R15 The entry point address of the exit.

Parameters

The first address is the address of a 40-fullword work area that can be used as working storage
by the exit. It is recommended that the first 18-fullwords of this area be used as a savearea.

The second address is the address of the appropriate entry in the transparency subtable
(TPFXTAB). The layout of this entry is defined in the DSECT in the copy book CCACSTAB.

The third address is the address of an 8-byte field where the exit should place the node ID to be
used for communication with the target Com-plete system.

Linkage

Change the supplied linkage for TPFXF46 so that the pre-defined exit name TPFXNODE is
overridden by the name of your choice. Insert the following lines between the INCLUDE
SYSLIB(TPFXCICS or TPFXTSO) and INCLUDE SYSLIB(TPFX01):

CHANGE userexit(TPFXNODE)
INCLUDE USERLIB(userexit)

The resulting linkage will return a condition code of 4.

An example of TPFXNODE is delivered in the source library.

82

InstallationExits for the TPF Component

TPFXFEX exit
This exit is invoked after CICS/TPFXTSO has built the data to be passed to the ACCESS program.

How to use TPFXFEX exit

Entry is via standard linkage conventions.

Upon entry to TPFXFEX, a set a parameters is received in the form of fullword addresses
pointed to by R1.

All registers must be restored to their original values before control is returned from the exit to
the calling program.

R1 The address of the parameter list.

R13 The address of an 18-fullword savearea.

R14 The return address.

R15 The entry point address of the exit.

Parameters

The first address is the address of a 40-fullword work area that can be used as working storage
by the exit. It is recommended that the first 18-fullwords of this area be used as a savearea.

The second address is the address of the appropriate entry in the transparency subtable
(TPFXTAB). The layout of this entry is defined in the DSECT in the copy book CCACSTAB.

The third address is the address of the area which will be passed to the ACCESS program.

Linkage

Link the TPFXFEX exit with CICS/TPFXTSO directly. Insert the following line after the
INCLUDE SYSLIB(TPFXF01):

INCLUDE USERLIB(TPFXFEX)

Exits in ACCESS46
Please refer to the description of the ACCESS exits ACSUUEX1 and ACSUUEX2 in the Com-plete
System Programming documentation.

83

Exits for the TPF ComponentInstallation

Starting Access from a User Program
If for some reason you do not wish to use the normal transparency procedure (TPFXF46) to initialize to
TPF, you may call the ACCESS program directly from a user written routine. A sample program to do this
is provided on the source dataset (ATPFINIT). The ACCESS program expects parameters to be passed in
a data area (mapped by CCACSCMN).

The first init call to TPF must always contain the string ITPF in the access common area to indicate that it
is the init call to TPF.

To activate the ATPFINIT program, assemble and link the ATPFINIT program (see sample link job
JCLLNKEX in the source library). The module must be linked to the TPF.CICSLOAD. The transaction
calling the ATPFINIT program must be defined as normal with CEDA or in the PCT.

84

InstallationStarting Access from a User Program

